Continuous-time identification of periodically parameter-varying state space models

被引:20
|
作者
Goos, Jan [1 ]
Pintelon, Rik [1 ]
机构
[1] Vrije Univ Brussel, ELEC, Pl Laan 2, B-1050 Brussels, Belgium
关键词
Linear parametrically varying (LPV) methodologies; Experiment design; Identification methods; FREQUENCY-DOMAIN; SYSTEMS;
D O I
10.1016/j.automatica.2016.04.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a new frequency domain identification technique to estimate multivariate Linear Parameter-Varying (LPV) continuous-time state space models, where a periodic variation of the parameters is assumed or imposed. The main goal is to obtain an LPV state space model suitable for control, from a single parameter-varying experiment. Although most LPV controller synthesis tools require continuous time state space models, the identification of such models is new. The proposed identification method designs a periodic input signal, taking the periodicity of the parameter variation into account. We show that when an integer number of periods is observed for both the input and the scheduling, the state space model representation has a specific, sparse structure in the frequency domain, which is exploited to speed up the estimation procedure. A weighted non-linear least squares algorithm then minimizes the output error. Two initialization methods are explored to generate starting values. The first approach uses a Linear Time-Invariant (LTI) approximation. The second estimates a Linear Time Variant (LTV) input-output differential equation, from which a corresponding state space realization is computed. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:254 / 263
页数:10
相关论文
共 50 条
  • [31] On stabilization and spectrum assignment in periodically time-varying continuous-time systems
    Yamé, JJ
    Hanus, R
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (06) : 979 - 983
  • [32] Kernelized Identification of Linear Parameter-Varying Models with Linear Fractional Representation
    Mejari, Manas
    Piga, Dario
    Toth, Roland
    Bemporad, Alberto
    2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, : 337 - 342
  • [33] Nonlinear System Identification — A Continuous-Time Bilinear State Space Approach
    Cheh-Han Lee
    Jer-Nan Juang
    The Journal of the Astronautical Sciences, 2012, 59 (1-2) : 398 - 420
  • [34] NONLINEAR SYSTEM IDENTIFICATION: A CONTINUOUS-TIME BILINEAR STATE SPACE APPROACH
    Lee, Cheh-Han
    Juang, Jer-Nan
    KYLE T. ALFRIEND ASTRODYNAMICS SYMPOSIUM, 2011, 139 : 421 - +
  • [35] Nonlinear System Identification - A Continuous-Time Bilinear State Space Approach
    Lee, Cheh-Han
    Juang, Jer-Nan
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2012, 59 (1-2): : 409 - 431
  • [36] Minimax FIR smoothers for deterministic continuous-time state space models
    Han, Soohee
    Kwon, Bo Kyu
    Kwon, Wook Hyun
    AUTOMATICA, 2009, 45 (06) : 1561 - 1566
  • [37] Identification of a flexible robot manipulator using a linear parameter-varying descriptor state-space structure
    Mercere, Guillaume
    Lovera, Marco
    Laroche, Edouard
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 818 - 823
  • [38] Cointegrated continuous-time linear state-space and MCARMA models
    Fasen-Hartmann, Vicky
    Scholz, Markus
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2020, 92 (07) : 1064 - 1099
  • [39] A bias-free least-squares parameter estimator for continuous-time state-space models
    Garnier, H
    Sibille, P
    Bastogne, T
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 1860 - 1865
  • [40] Identification of a thermal system using continuous linear parameter-varying fractional modelling
    Gabano, J. -D.
    Poinot, T.
    Kanoun, H.
    IET CONTROL THEORY AND APPLICATIONS, 2011, 5 (07): : 889 - 899