On solutions of generalized Sylvester equation in polynomial matrices

被引:3
|
作者
Chen, Sheng [1 ]
Tian, Yunbo [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
EXPLICIT SOLUTIONS; NEURAL-NETWORK; Y(LAMBDA)B(LAMBDA); A(LAMBDA)X(LAMBDA); SIMULATION; UNIQUENESS; DIVISORS;
D O I
10.1016/j.jfranklin.2014.09.024
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the generalized Sylvester equation in polynomial matrices A(lambda)X(lambda) + Y(lambda)B(lambda) = C(lambda), where A(lambda) and B(lambda) are monic. If the equation has solutions, then it has a solution satisfying a natural degree constraint condition. It is shown that the generalized Sylvester equation in polynomial matrices can be reduced to the linear matrix equation A(R)(n)Y + Sigma(n-1)(i=0)A(R)(i)YB(i)=C, where A(R) is the second block-companion matrix of A(lambda). (C) 2014 The Franldin Institute. Published by Elsevier Ltd. All tights reserved.
引用
收藏
页码:5376 / 5385
页数:10
相关论文
共 50 条
  • [21] Parallel QR processing of Generalized Sylvester matrices
    Kourniotis, M.
    Mitrouli, M.
    Triantafyllou, D.
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (16) : 1484 - 1491
  • [22] Solutions to the nonhomogeneous generalized Sylvester quaternion j-conjugate matrix equation
    Song, Caiqin
    Feng, Jun-e
    Wang, Xiaodong
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 164 - 169
  • [23] Convergence of HS version of BCR algorithm to solve the generalized Sylvester matrix equation over generalized reflexive matrices
    Hajarian, Masoud
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (05): : 2340 - 2357
  • [24] The reflexive and Hermitian reflexive solutions of the generalized Sylvester-conjugate matrix equation
    Hajarian, Masoud
    Dehghan, Mehdi
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2013, 20 (04) : 639 - 653
  • [25] On closed-form solutions to the generalized Sylvester-conjugate matrix equation
    Wu, Ai-Guo
    Zhang, Enze
    Liu, Fuchun
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (19) : 9730 - 9741
  • [26] Reverse generalized Besselmatrix differential equation, polynomial solutions, and their properties
    Abul-Dahab, M.
    Abul-Ez, M.
    Kishka, Z.
    Constales, D.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (06) : 1005 - 1013
  • [27] POLYNOMIAL GENERALIZED INVERSES OF POLYNOMIAL-MATRICES
    MEENAKSHI, A
    ANANDAM, N
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1993, 24 (01): : 51 - 59
  • [28] GENERALIZED INVERSE OF POLYNOMIAL MATRICES
    BOSE, NK
    MITRA, SK
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1978, 23 (03) : 491 - 493
  • [29] Convergence properties of BCR method for generalized Sylvester matrix equation over generalized reflexive and anti-reflexive matrices
    Hajarian, Masoud
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (10): : 1975 - 1990
  • [30] Three special kinds of least squares solutions for the quaternion generalized Sylvester matrix equation
    Wei, Anli
    Li, Ying
    Ding, Wenxv
    Zhao, Jianli
    AIMS MATHEMATICS, 2022, 7 (04): : 5029 - 5048