On solutions of generalized Sylvester equation in polynomial matrices

被引:3
|
作者
Chen, Sheng [1 ]
Tian, Yunbo [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
EXPLICIT SOLUTIONS; NEURAL-NETWORK; Y(LAMBDA)B(LAMBDA); A(LAMBDA)X(LAMBDA); SIMULATION; UNIQUENESS; DIVISORS;
D O I
10.1016/j.jfranklin.2014.09.024
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the generalized Sylvester equation in polynomial matrices A(lambda)X(lambda) + Y(lambda)B(lambda) = C(lambda), where A(lambda) and B(lambda) are monic. If the equation has solutions, then it has a solution satisfying a natural degree constraint condition. It is shown that the generalized Sylvester equation in polynomial matrices can be reduced to the linear matrix equation A(R)(n)Y + Sigma(n-1)(i=0)A(R)(i)YB(i)=C, where A(R) is the second block-companion matrix of A(lambda). (C) 2014 The Franldin Institute. Published by Elsevier Ltd. All tights reserved.
引用
收藏
页码:5376 / 5385
页数:10
相关论文
共 50 条