Robust superhydrophobic TiO2@fabrics for UV shielding, self-cleaning and oil-water separation

被引:475
|
作者
Huang, J. Y. [1 ,2 ]
Li, S. H. [1 ]
Ge, M. Z. [1 ]
Wang, L. N. [3 ]
Xing, T. L. [1 ]
Chen, G. Q. [1 ]
Liu, X. F. [1 ]
Al-Deyab, S. S. [4 ]
Zhang, K. Q. [1 ,2 ]
Chen, T. [5 ]
Lai, Y. K. [1 ,2 ]
机构
[1] Soochow Univ, Coll Text & Clothing Engn, Natl Engn Lab Modern Silk, Suzhou 215123, Jiangsu, Peoples R China
[2] Soochow Univ, Res Ctr Cooperat Innovat Funct Organ Polymer Mat, Suzhou 215123, Jiangsu, Peoples R China
[3] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
[4] King Saud Univ, Coll Sci, Dept Chem, Riyadh 11451, Saudi Arabia
[5] Soochow Univ, Jiangsu Prov Key Lab Adv Robot, Suzhou 215021, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
POLYHEDRAL OLIGOMERIC SILSESQUIOXANE; TIO2 NANOSTRUCTURE SURFACES; IN-SITU; SUPEROLEOPHOBIC SURFACES; REVERSIBLE WETTABILITY; LAUNDERING DURABILITY; EXTREME WETTABILITY; ADHESION; TRANSPARENT; MEMBRANES;
D O I
10.1039/c4ta05332j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Inspired by the surface geometry and composition of the lotus leaf with its self-cleaning behavior, in this work, a TiO2@fabric composite was prepared via a facile strategy for preparing marigold flower-like hierarchical TiO2 particles through a one-pot hydrothermal reaction on a cotton fabric surface. In addition, a robust superhydrophobic TiO2@fabric was further constructed by fluoroalkylsilane modification as a versatile platform for UV shielding, self-cleaning and oil-water separation. The results showed TiO2 particles were uniformly distributed on the fibre surface with a high coating density. In comparison with hydrophobic cotton fabric, the TiO2@fabric exhibited a high superhydrophobic activity with a contact angle of similar to 160 degrees and a sliding angle lower than 10 degrees. The robust superhydrophobic fabric had high stability against repeated abrasion without an apparent reduction in contact angle. The as-prepared composite TiO2@fabric demonstrated good anti-UV ability. Moreover, the composite fabric demonstrated highly efficient oil-water separation due to its extreme wettability contrast (superhydrophobicity/superoleophilicity). We expect that this facile process can be readily and widely adopted for the design of multifunctional fabrics for excellent anti-UV, effective self-cleaning, efficient oil-water separation, and microfluidic management applications.
引用
收藏
页码:2825 / 2832
页数:8
相关论文
共 50 条
  • [11] Robust fluorine-free superhydrophobic PDMS-ormosil@fabrics for highly effective self-cleaning and efficient oil-water separation
    Cao, Chunyan
    Ge, Mingzheng
    Huang, Jianying
    Li, Shuhui
    Deng, Shu
    Zhang, Songnan
    Chen, Zhong
    Zhang, Keqin
    Al-Deyab, Salem S.
    Lai, Yuekun
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (31) : 12179 - 12187
  • [12] Preparation of a robust cellulose nanocrystal superhydrophobic coating for self-cleaning and oil-water separation only by spraying
    Huang, Jingda
    Wang, Siqun
    Lyu, Shaoyi
    Fu, Feng
    INDUSTRIAL CROPS AND PRODUCTS, 2018, 122 : 438 - 447
  • [13] Preparation of Durable Superhydrophobic Cotton Fabric for Self-cleaning and Oil-water Separation
    Xu, Qingbo
    Ke, Xiating
    Zhang, Yanyan
    Wang, Peng
    FIBERS AND POLYMERS, 2022, 23 (06) : 1572 - 1581
  • [14] Superhydrophobic cotton nonwoven fabrics through atmospheric plasma treatment for applications in self-cleaning and oil-water separation
    Yang, Jing
    Pu, Yi
    He, Hongwei
    Cao, Renguang
    Miao, Dagang
    Ning, Xin
    CELLULOSE, 2019, 26 (12) : 7507 - 7522
  • [15] A less harmful system of preparing robust fabrics for integrated self-cleaning, oil-water separation and water purification
    Yang, Maiping
    Jiang, Chi
    Liu, Weiqu
    Liang, Liyan
    Pi, Ke
    ENVIRONMENTAL POLLUTION, 2019, 255
  • [16] Fabrication of polydopamine-coated superhydrophobic fabrics for oil/water separation and self-cleaning
    Xu, Zhanglian
    Miyazaki, Koji
    Hori, Teruo
    APPLIED SURFACE SCIENCE, 2016, 370 : 243 - 251
  • [17] Facile preparation of robust and superhydrophobic materials for self-cleaning and oil/water separation
    Cao, Wen-Tao
    Liu, Yan-Jun
    Ma, Ming-Guo
    Zhu, Jie-Fang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2017, 529 : 18 - 25
  • [18] Eco-friendly preparation of robust superhydrophobic Cu(OH)2 coating for self-cleaning, oil-water separation and oil sorption
    Deng, Wanshun
    Long, Mengying
    Miao, Xinrui
    Wen, Ni
    Deng, Wenli
    SURFACE & COATINGS TECHNOLOGY, 2017, 325 : 14 - 21
  • [19] Design of fluorine-free superhydrophobic silk fabrics with mechanical durability and self-cleaning properties for oil-water separation
    Wei, Tiancheng
    Fan, Xin
    Cheng, Qichao
    Cai, Jiangfeng
    Wang, Yecheng
    Wang, Jie
    Xu, Zongpu
    Shuai, Yajun
    Wan, Quan
    Chen, Yuyin
    Yang, Mingying
    SURFACES AND INTERFACES, 2024, 48
  • [20] Fabrication of durable underoil superhydrophobic surfaces with self-cleaning and oil-water separation properties
    Ren, Wanfei
    Lian, Zhongxu
    Wang, Jiaqi
    Xu, Jinkai
    Yu, Huadong
    RSC ADVANCES, 2022, 12 (07) : 3838 - 3846