Generalized uncertainty relations and entanglement dynamics in quantum Brownian motion models

被引:7
|
作者
Anastopoulos, C. [1 ]
Kechribaris, S. [1 ]
Mylonas, D. [1 ]
机构
[1] Univ Patras, Dept Phys, GR-26500 Patras, Greece
关键词
SEPARABILITY CRITERION; MASTER EQUATION; INSEPARABILITY;
D O I
10.1103/PhysRevA.82.042119
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study entanglement dynamics in quantum Brownian motion (QBM) models. Our main tool is the Wigner function propagator. Time evolution in the Wigner picture is physically intuitive and it leads to a simple derivation of a master equation for any number of system harmonic oscillators and spectral density of the environment. It also provides generalized uncertainty relations, valid for any initial state, that allow a characterization of the environment in terms of the modifications it causes to the system's dynamics. In particular, the uncertainty relations are very informative about the entanglement dynamics of Gaussian states, and to a lesser extent for other families of states. For concreteness, we apply these techniques to a bipartite QBM model, describing the processes of entanglement creation, disentanglement, and decoherence at all temperatures and time scales.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] BROWNIAN AND QUANTUM MOTION
    MADDOX, J
    NATURE, 1984, 311 (5982) : 101 - 101
  • [32] Quantum Brownian motion
    Gaioli, FH
    GarciaAlvarez, ET
    Guevara, J
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1997, 36 (11) : 2167 - 2207
  • [33] Entanglement and the generalized uncertainty principle
    Blado, Gardo
    Herrera, Francisco
    Erwin, Joshuah
    PHYSICS ESSAYS, 2018, 31 (04) : 397 - 402
  • [34] Brownian motion and quantum dynamics of magnetic monopoles in spin ice
    L. Bovo
    J.A. Bloxsom
    D. Prabhakaran
    G. Aeppli
    S.T. Bramwell
    Nature Communications, 4
  • [35] QUANTUM-FLUID-DYNAMICS DESCRIPTION OF THE BROWNIAN-MOTION
    NASSAR, AB
    PHYSICS LETTERS A, 1984, 106 (1-2) : 43 - 46
  • [37] Classical dynamics for linear systems: The case of quantum Brownian motion
    Anglin, J
    Habib, S
    MODERN PHYSICS LETTERS A, 1996, 11 (32-33) : 2655 - 2662
  • [38] Brownian motion and quantum dynamics of magnetic monopoles in spin ice
    Bovo, L.
    Bloxsom, J. A.
    Prabhakaran, D.
    Aeppli, G.
    Bramwell, S. T.
    NATURE COMMUNICATIONS, 2013, 4
  • [39] The Generalized Multifractional Brownian Motion
    Antoine Ayache
    Jacques Levy Vehel
    Statistical Inference for Stochastic Processes, 2000, 3 (1-2) : 7 - 18
  • [40] On the Generalized Fractional Brownian Motion
    Zili M.
    Mathematical Models and Computer Simulations, 2018, 10 (6) : 759 - 769