Whittaker Modules for Classical Lie Superalgebras

被引:14
|
作者
Chen, Chih-Whi [1 ]
机构
[1] Natl Cent Univ, Dept Math, Taoyuan, Taiwan
关键词
KAZHDAN-LUSZTIG CONJECTURE; REPRESENTATIONS; FUNCTORS; FINITE; ALGEBRAS; PRODUCTS; DUALITY;
D O I
10.1007/s00220-021-04159-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We classify simple Whittaker modules for classical Lie superalgebras in terms of their parabolic decompositions. We establish a type of Milicic-Soergel equivalence of a category of Whittaker modules and a category of Harish-Chandra bimodules. For classical Lie superalgebras of type I, we reduce the problem of composition factors of standard Whittaker modules to that of Verma modules in their BGG categories O. As a consequence, the composition series of standard Whittaker modules over the general linear Lie superalgebras gl(m|n) and the ortho-symplectic Lie superalgebras osp(2|2n) can be computed via the Kazhdan-Lusztig combinatorics.
引用
收藏
页码:351 / 383
页数:33
相关论文
共 50 条
  • [1] Whittaker Modules for Classical Lie Superalgebras
    Chih-Whi Chen
    Communications in Mathematical Physics, 2021, 388 : 351 - 383
  • [2] WHITTAKER CATEGORIES AND WHITTAKER MODULES FOR LIE SUPERALGEBRAS
    Bagci, Irfan
    Christodoulopoulou, Konstantina
    Wiesner, Emilie
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (11) : 4932 - 4947
  • [3] Tilting modules for classical Lie superalgebras
    Chen, Chih-Whi
    Cheng, Shun-Jen
    Coulembier, Kevin
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 103 (03): : 870 - 900
  • [4] Complexity of modules over classical Lie superalgebras
    El Turkey, Houssein
    JOURNAL OF ALGEBRA, 2016, 445 : 365 - 393
  • [5] Integrable bounded weight modules of classical Lie superalgebras at infinity
    Calixto, Lucas
    Penkov, Ivan
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (02)
  • [6] Bounded weight modules for basic classical Lie superalgebras at infinity
    Grantcharov, Dimitar
    Penkov, Ivan
    Serganova, Vera
    EUROPEAN JOURNAL OF MATHEMATICS, 2024, 10 (01)
  • [7] Explicit realizations of simple weight modules of classical Lie superalgebras
    Grantcharov, Dimitar
    GROUPS, RINGS AND GROUP RINGS, 2009, 499 : 141 - 148
  • [8] SIMPLE BOUNDED HIGHEST WEIGHT MODULES OF BASIC CLASSICAL LIE SUPERALGEBRAS
    MARIA GORELIK
    DIMITAR GRANTCHAROV
    Transformation Groups, 2021, 26 : 893 - 914
  • [9] SIMPLE BOUNDED HIGHEST WEIGHT MODULES OF BASIC CLASSICAL LIE SUPERALGEBRAS
    Gorelik, Maria
    Grantcharov, Dimitar
    TRANSFORMATION GROUPS, 2021, 26 (03) : 893 - 914
  • [10] WEYL MODULES FOR LIE SUPERALGEBRAS
    Calixto, Lucas
    Lemay, Joel
    Savage, Alistair
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (08) : 3191 - 3207