Integrals of motion in the many-body localized phase

被引:387
|
作者
Ros, V. [1 ,2 ]
Mueller, M. [3 ]
Scardicchio, A. [2 ,4 ,5 ,6 ]
机构
[1] SISSA, I-34136 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, I-34151 Trieste, Italy
[3] Abdus Snlam ICTP, I-34151 Trieste, Italy
[4] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[5] Columbia Univ, Dept Phys, New York, NY 10027 USA
[6] CUNY, Grad Coll, ITS, New York, NY 10016 USA
关键词
SYSTEM; TRANSITION; ERGODICITY;
D O I
10.1016/j.nuclphysb.2014.12.014
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct a complete set of quasi-local integrals of motion for the many-body localized phase of interacting fermions in a disordered potential. The integrals of motion can be chosen to have binary spectrum {0, 1}, thus constituting exact quasiparticle occupation number operators for the Fermi insulator. We map the problem onto a non-Hermitian hopping problem on a lattice in operator space. We show how the integrals of motion can be built, under certain approximations, as a convergent series in the interaction strength. An estimate of its radius of convergence is given, which also provides an estimate for the many-body localization-delocalization transition. Finally, we discuss how the properties of the operator expansion for the integrals of motion imply the presence or absence of a finite temperature transition. (C) 2014 The Authors. Published by Elsevier B.V.
引用
收藏
页码:420 / 465
页数:46
相关论文
共 50 条
  • [31] Ergodic inclusions in many-body localized systems
    Colmenarez, Luis
    Luitz, David J.
    De Roeck, Wojciech
    PHYSICAL REVIEW B, 2024, 109 (08)
  • [32] Entanglement spreading in a many-body localized system
    Nanduri, Arun
    Kim, Hyungwon
    Huse, David A.
    PHYSICAL REVIEW B, 2014, 90 (06):
  • [33] Fast convergence of path integrals for many-body systems
    Bogojevic, A.
    Vidanovic, I.
    Balaz, A.
    Belic, A.
    PHYSICS LETTERS A, 2008, 372 (19) : 3341 - 3349
  • [34] Many-body diffusion and path integrals for identical particles
    Lemmens, LF
    Brosens, F
    Devreese, JT
    PHYSICAL REVIEW E, 1996, 53 (05): : 4467 - 4476
  • [35] PATH-INTEGRALS FOR THE NUCLEAR MANY-BODY PROBLEM
    BLAIZOT, JP
    ORLAND, H
    PHYSICAL REVIEW C, 1981, 24 (04): : 1740 - 1761
  • [36] Instability of many-body localized systems as a phase transition in a nonstandard thermodynamic limit
    Gopalakrishnan, Sarang
    Huse, David A.
    PHYSICAL REVIEW B, 2019, 99 (13)
  • [37] Turing patterns on coupled phase oscillator chains with localized many-body interactions
    Luo, Hao-jie
    Xue, Yu
    Huang, Mu-yang
    Wang, Y., I
    Zhang, Qiang
    Zhang, Kun
    EPL, 2023, 142 (04)
  • [38] Floquet many-body engineering: topology and many-body physics in phase space lattices
    Liang, Pengfei
    Marthaler, Michael
    Guo, Lingzhen
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [39] Persistence of correlations in many-body localized spin chains
    Vadimov, Vasilii
    Ala-Nissila, Tapio
    Mottonen, Mikko
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [40] Floquet Engineering Topological Many-Body Localized Systems
    Decker, K. S. C.
    Karrasch, C.
    Eisert, J.
    Kennes, D. M.
    PHYSICAL REVIEW LETTERS, 2020, 124 (19)