Disease outbreak detection and tracking for biosurveillance: A data fusion approach

被引:0
|
作者
Blind, Jason [1 ]
Das, Subrata [1 ]
机构
[1] Charles River Analyt Inc, Cambridge, MA 02138 USA
关键词
biosurveillance; clustering; data fusion; dynamic Bayesian networks; latent semantic analysis; unsupervised learning;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present an application that utilizes a novel two-level fusion architecture to detect and track disease outbreaks across public health system databases. In the first fusion level, collected data is used to detect and track indicative bio-events using latent semantic analysis and unsupervised clustering. In the second fusion level, clusters produced via the first are used to feed dynamic Bayesian networks which assess outbreak type and state. We train and test our system using data from a 200K+ free-text emergency department (ED) chief complaint record set.
引用
收藏
页码:798 / 804
页数:7
相关论文
共 50 条
  • [31] Integrating Heterogeneous Data for a Multi-disease Outbreak Detection Framework
    Villanueva-Miranda, Ismael
    Akbar, Monika
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 2828 - 2837
  • [32] Data Fusion in a Multi Agent System for Person Detection and Tracking in an Intelligent Room
    Chiperi, Matei
    Trascau, Mihai
    Mocanu, Irina
    Florea, Adina Magda
    INTELLIGENT DISTRIBUTED COMPUTING VIII, 2015, 570 : 385 - 394
  • [33] Hard and soft data fusion for joint tracking and classification/intent-detection
    Nunez, Rafael C.
    Samarakoon, Buddhika
    Premaratne, Kamal
    Murthi, Manohar N.
    2013 16TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2013, : 661 - 668
  • [34] Data Fusion for Unsupervised Video Object Detection, Tracking and Geo-Positioning
    Kolev, Denis
    Markarian, Garik
    Kangin, Dmitry
    2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2015, : 142 - 149
  • [35] Joint Probabilistic Data Association Fusion Approach for Pedestrian Detection
    Garcia, Fernando
    de la Escalera, Arturo
    Armingol, Jose Maria
    2013 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2013, : 1338 - 1343
  • [36] Semisupervised Local Fusion Approach for Mine Detection in SONAR Data
    Ben Ismail, Mohamed Maher
    Bchir, Ouiem
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2015, 30 (11) : 1161 - 1183
  • [37] An Explainable Multimodal Data Fusion Approach for Heart Failure Detection
    Botros, Jad
    Mourad-Chehade, Farah
    Laplanche, David
    2024 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS, MEMEA 2024, 2024,
  • [38] An Approach to Tree Detection Based on the Fusion of Multitemporal LiDAR Data
    Marinelli, Daniele
    Paris, Claudia
    Bruzzone, Lorenzo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (11) : 1771 - 1775
  • [39] A data fusion based approach for damage detection in linear systems
    Grande, Ernesto
    Imbimbo, Maura
    FRATTURA ED INTEGRITA STRUTTURALE, 2014, Gruppo Italiano Frattura (29): : 325 - 333
  • [40] A Joint Multiple Hypothesis Tracking and Particle Filter Approach for Aerial Data Fusion
    d'Apolito, Francesco
    Eliasch, Christian
    Sulzbachner, Christoph
    Mecklenbrauker, Christoph
    2022 25TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2022), 2022,