Extensions of simple modules over Leavitt path algebras

被引:15
|
作者
Abrams, Gene [1 ]
Mantese, Francesca [2 ]
Tonolo, Alberto [3 ]
机构
[1] Univ Colorado, Dept Math, Colorado Springs, CO 80918 USA
[2] Univ Verona, Dipartimento Informat, I-87134 Verona, Italy
[3] Univ Padua, Dipartimento Matemat, I-35121 Padua, Italy
关键词
Leavitt path algebra; Chen simple module; GRAPH;
D O I
10.1016/j.jalgebra.2015.01.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be a directed graph, K any field, and let L-K(E) denote the Leavitt path algebra of E with coefficients in K. For each rational infinite path c(infinity) of E we explicitly construct a projective resolution of the corresponding Chen simple left L-K(E)-module V-[c infinity] Further, when E is row-finite, for each irrational infinite path p of E we explicitly construct a projective resolution of the corresponding Chen simple left L-K(E)-module V-[p]. For Chen simple modules S,T we describe Ext(Lk(E)(1))S,T) by presenting an explicit K-basis. For any graph E containing at least one cycle, this description guarantees the existence of indecomposable left L-K(E)-modules of any prescribed finite length. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:78 / 106
页数:29
相关论文
共 50 条