Optical spectroscopy of lanthanides doped in wide band-gap semiconductor nanocrystals

被引:55
|
作者
Liu, Yongsheng [1 ,2 ]
Luo, Wenqin [1 ,2 ]
Zhu, Haomiao [1 ,2 ]
Chen, Xueyuan [1 ,2 ]
机构
[1] Chinese Acad Sci, Fujian Inst Res Struct Matter, Key Lab Optoelect Mat Chem & Phys, Fuzhou 350002, Fujian, Peoples R China
[2] State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China
关键词
Lanthanides; Semiconductor nanocrystals; Electronic structure; Excited-state dynamics; Photoluminescence; EFFICIENT ENERGY-TRANSFER; RARE-EARTH IONS; ZNO NANOCRYSTALS; UP-CONVERSION; TIO2; NANOCRYSTALS; LUMINESCENCE; EU3+; PHOTOLUMINESCENCE; ER3+; MICROSPHERES;
D O I
10.1016/j.jlumin.2010.07.018
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Currently, tripositive lanthanide (Ln(3+)) ions doped wide band-gap semiconductor nanocrystals (NCs) have been the focus of research interest due to their distinct optical properties and potential applications in optical devices and luminescent biolabels. Because of the low absorptions of parity-forbidden 4f-4f transitions for Ln(3+), it is highly anticipated that the luminescence of Ln(3+) ions embedded in wide band-gap NC lattices can be sensitized efficiently via exciton recombination in the host. For this purpose, the successful incorporation of Ln(3+) into the lattices of semiconductor NCs is of utmost importance, which still remains intractable via conventional wet chemical methods. Here, the most recent progress in the optical spectroscopy of Ln(3+) ions doped wide band-gap semiconductor NCs is discussed. Much attention was focused on the optical properties including electronic structures, luminescence dynamics, energy transfer as well as the up-conversion emissions of Ln(3+) ions in ZnO, TiO2, SnO2 and In2O3 NCs that were synthesized in our laboratory using wet chemical methods. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:415 / 422
页数:8
相关论文
共 50 条
  • [31] Optical bistability and phase transitions in a doped photonic band-gap material
    John, S
    Quang, T
    PHYSICAL REVIEW A, 1996, 54 (05): : 4479 - 4488
  • [32] Optical band-gap and dielectric behavior in Ho - doped ZnO nanoparticles
    Franco, A., Jr.
    Pessoni, H. V.
    MATERIALS LETTERS, 2016, 180 : 305 - 308
  • [33] Attosecond Spectroscopy of Band-gap Dynamics
    Schultze, M.
    Ramasesha, K.
    Bothschafter, E.
    Sommer, A.
    Pemmaraju, C. D.
    Sato, S. A.
    Whitmore, D.
    Gandman, A.
    Prell, J. S.
    Borja, L. J.
    Prendergast, D.
    Yabana, K.
    Neumark, D. M.
    Krausz, F.
    Leone, S. R.
    2015 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2015,
  • [34] Magnetic ions in wide band gap semiconductor nanocrystals for optimized thermoelectric properties
    Xiao, Chong
    Li, Kun
    Zhang, Jiajia
    Tong, Wei
    Liu, Youwen
    Li, Zhou
    Huang, Pengcheng
    Pan, Bicai
    Su, Haibin
    Xie, Yi
    MATERIALS HORIZONS, 2014, 1 (01) : 81 - 86
  • [35] Doping Induced Band-gap widening in Transition-metal doped ZnO Nanocrystals
    Azimatu Seidu
    Martin Egblewogbe
    G. Gebreyesus
    George Nkrumah-Buandoh
    MRS Advances, 2018, 3 (42-43) : 2643 - 2652
  • [36] Doping Induced Band-gap widening in Transition-metal doped ZnO Nanocrystals
    Seidu, Azimatu
    Egblewogbe, Martin
    Gebreyesus, G.
    Nkrumah-Buandoh, George
    MRS ADVANCES, 2018, 3 (42-43): : 2643 - 2652
  • [37] OPTICAL FUNDAMENTAL BAND-GAP ENERGY OF SEMICONDUCTORS BY PHOTOACOUSTIC-SPECTROSCOPY
    DESOUZA, JC
    DASILVA, AF
    VARGAS, H
    JOURNAL DE PHYSIQUE IV, 1994, 4 (C7): : 129 - 132
  • [38] Size effects on the band-gap of semiconductor compounds
    Li, M.
    Li, J. C.
    MATERIALS LETTERS, 2006, 60 (20) : 2526 - 2529
  • [39] BAND-GAP OF AGGATE2 SEMICONDUCTOR
    CHATRAPHORN, S
    JOURNAL OF THE SCIENCE SOCIETY OF THAILAND, 1980, 6 (03): : 123 - 129
  • [40] PREDICTED BAND-GAP OF THE NEW SEMICONDUCTOR SIGESN
    SOREF, RA
    PERRY, CH
    JOURNAL OF APPLIED PHYSICS, 1991, 69 (01) : 539 - 541