Design for Improved Fault Tolerance in Large Synchronous Machines

被引:0
|
作者
Tessarolo, A. [1 ]
Luise, F. [2 ]
机构
[1] Univ Trieste, I-34127 Trieste, Italy
[2] NIDEC ASI, Monfalcone, Italy
关键词
Concentrated windings; fault tolerance; large synchronous machines; permanent magnet; wound field; PERMANENT-MAGNET MACHINE; PM MACHINES; MOTORS; SLOT; INTERIOR;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fault tolerance is a basic requirement for modern electric motors and generators and can be achieved with a number of integrated approaches, like condition monitoring, post-fault control strategies and suitable system design architectures. In particular, this paper focuses on large synchronous machines (both permanent-magnet and wound-field ones) and discusses the main design provisions that can be adopted to improve their ability to withstand various kinds of fault. The fault-tolerant design solutions recommended for small-power machines are critically reviewed and their scalability to higher machine sizes is discussed also referring to practical industrial realizations. The most promising potential for fault-tolerance design is recognized in large low-speed high-pole-count permanent-magnet synchronous machines (e. g. for ship propulsion and wind power generation) thanks to their suitability for highly-modular multi-unit fractional-slot concentrated-winding architectures.
引用
收藏
页码:45 / 52
页数:8
相关论文
共 50 条
  • [31] Effect of Rotor Eccentricity in Large Synchronous Machines
    Michon, Melanie
    Holehouse, Robert C.
    Atallah, Kais
    Johnstone, Gary
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (11)
  • [32] ROEBET BAR WINDINGS FOR LARGE SYNCHRONOUS MACHINES
    NEIDHOFE.G
    BROWN BOVERI REVIEW, 1970, 57 (01): : 4 - &
  • [33] A Survey on Fault Diagnosis and Fault Tolerant Methodologies for Permanent Magnet Synchronous Machines
    Bhuiyan, Erphan A.
    Akhand, Md. Maeenul Azad
    Das, Sajal K.
    Ali, Md. F.
    Tasneem, Z.
    Islam, Md. R.
    Saha, D. K.
    Badal, Faisal R.
    Ahamed, Md. H.
    Moyeen, S. I.
    INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2020, 17 (06) : 763 - 787
  • [34] A Survey on Fault Diagnosis and Fault Tolerant Methodologies for Permanent Magnet Synchronous Machines
    Erphan A.Bhuiyan
    Maeenul Azad Akhand
    Sajal K.Das
    F.Ali
    Z.Tasneem
    R.Islam
    D.K.Saha
    Faisal R.Badal
    H.Ahamed
    S.I.Moyeen
    International Journal of Automation and Computing, 2020, 17 (06) : 763 - 787
  • [35] A Survey on Fault Diagnosis and Fault Tolerant Methodologies for Permanent Magnet Synchronous Machines
    Erphan A. Bhuiyan
    Md. Maeenul Azad Akhand
    Sajal K. Das
    Md. F. Ali
    Z. Tasneem
    Md. R. Islam
    D. K. Saha
    Faisal R. Badal
    Md. H. Ahamed
    S. I. Moyeen
    International Journal of Automation and Computing, 2020, 17 : 763 - 787
  • [36] DESIGN OF IMPROVED FAILURE DETECTION EXPERIMENTS IN SYNCHRONOUS SEQUENTIAL-MACHINES BASED ON TERMINAL MEASUREMENTS
    DAS, SR
    CHEN, Z
    WU, SM
    LEE, SY
    BHATTACHARYYA, A
    COMPUTERS & ELECTRICAL ENGINEERING, 1979, 6 (04) : 293 - 297
  • [37] Improved fault emulation for synchronous sequential circuits
    Raik, J
    Ellervee, P
    Tihhomirov, V
    Ubar, R
    DSD 2005: 8TH EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN, PROCEEDINGS, 2005, : 72 - 78
  • [38] Reduction of Copper Winding in Synchronous Machines with Improved Performances
    Singh, Shashwat
    Sharma, N. K.
    Tiwari, Prabhakar
    2012 2ND INTERNATIONAL CONFERENCE ON POWER, CONTROL AND EMBEDDED SYSTEMS (ICPCES 2012), 2012,
  • [39] Byzantine Fault Tolerance in the Partitioned Synchronous System Model
    Silveira da Silva, Wellington Lacerda
    Dantas Ramos, Marco Antonio
    de Araujo Macedo, Raimundo Jose
    2018 VIII BRAZILIAN SYMPOSIUM ON COMPUTING SYSTEMS ENGINEERING (SBESC 2018), 2018, : 106 - 113
  • [40] Optimal Control for Improved Damping of Virtual Synchronous Machines
    Nouti, Diala
    Josevski, Martina
    Monti, Antonello
    2020 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE 2020): SMART GRIDS: KEY ENABLERS OF A GREEN POWER SYSTEM, 2020, : 559 - 563