Data-based ensemble approach for semi-supervised anomaly detection in machine tool condition monitoring

被引:15
|
作者
Denkena, B. [1 ]
Dittrich, M-A [1 ]
Noske, H. [1 ]
Stoppel, D. [1 ]
Lange, D. [2 ]
机构
[1] Inst Prod Engn & Machine Tools, Univ 2, D-30823 Garbsen, Germany
[2] Marposs Monitoring Solut GmbH, Buchenring 40, D-21272 Egestorf, Germany
关键词
Condition monitoring; Machine learning; Failure; Ball screw; Maintenance; ARTIFICIAL-INTELLIGENCE; PROGNOSTICS; DIAGNOSIS;
D O I
10.1016/j.cirpj.2021.09.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Data-based methods are capable to monitor machine components. Approaches for semi-supervised anomaly detection are trained using sensor data that describe the normal state of machine components. Thus, such approaches are interesting for industrial practice, since sensor data do not have to be labeled in a time-consuming and costly way. In this work, an ensemble approach for semi-supervised anomaly detection is used to detect anomalies. It is shown that the ensemble approach is suitable for condition monitoring of ball screws. For the evaluation of the approach, a data set of a regular test cycle of a ball screw from automotive industry is used. (C) 2021 The Author(s).
引用
收藏
页码:795 / 802
页数:8
相关论文
共 50 条
  • [21] An Efficient Semi-Supervised SVM for Anomaly Detection
    Kim, Junae
    Montague, Paul
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 2843 - 2850
  • [22] A Semi-Supervised Learning Approach to IEEE 802.11 Network Anomaly Detection
    Ran, Jing
    Ji, Yidong
    Tang, Bihua
    2019 IEEE 89TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2019-SPRING), 2019,
  • [23] A Semi-Supervised Learning Approach for Network Anomaly Detection in Fog Computing
    Xu, Shengjie
    Qian, Yi
    Hu, Rose Qingyang
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [24] Semi-Supervised Isolation Forest for Anomaly Detection
    Stradiotti, Luca
    Perini, Lorenzo
    Davis, Jesse
    PROCEEDINGS OF THE 2024 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2024, : 670 - 678
  • [25] An Anomaly Detection Approach Based on Machine Learning and SCADA Data for Condition Monitoring of Wind Turbines
    Cui, Yue
    Bangalore, Pramod
    Tjernberg, Lina Bertling
    2018 IEEE INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS (PMAPS), 2018,
  • [26] A semi-supervised classification approach based on restricted Boltzmann machine for fMRI data
    Liu, Ning
    Yao, Li
    Zhao, Xiaojie
    2020 8TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2020, : 218 - 221
  • [27] Incremental Clustering for Semi-Supervised Anomaly Detection applied on Log Data
    Wurzenberger, Markus
    Skopik, Florian
    Landauer, Max
    Greitbauer, Philipp
    Fiedler, Roman
    Kastner, Wolfgang
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY AND SECURITY (ARES 2017), 2017,
  • [28] A SEMI-SUPERVISED MULTICLASS ANOMALY DETECTION APPROACH FOR PARTIALLY LABELED IN-PROCESS MEASUREMENT DATA
    Cohen, Joseph
    Ni, Jun
    PROCEEDINGS OF THE ASME 2021 16TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE (MSEC2021), VOL 2, 2021,
  • [29] Review of ensemble classification over data streams based on supervised and semi-supervised
    Han, Meng
    Li, Xiaojuan
    Wang, Le
    Zhang, Ni
    Cheng, Haodong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (03) : 3859 - 3878
  • [30] A semi-supervised approach to dark matter searches in direct detection data with machine learning
    Herrero-Garcia, Juan
    Patrick, Riley
    Scaffidi, Andre
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (02):