A note on domination and independence-domination numbers of graphs

被引:0
|
作者
Milanic, Martin [1 ,2 ]
机构
[1] Univ Primorska, UP IAM, SI-6000 Koper, Slovenia
[2] Univ Primorska, UP FAMNIT, SI-6000 Koper, Slovenia
关键词
Vizing's conjecture; domination number; independence-domination number; weakly chordal graph; NP-completeness; hereditary graph class; IDD-perfect graph; SUBGRAPHS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Vizing's conjecture is true for graphs G satisfying gamma(i)(G) = gamma(G), where gamma(G) is the domination number of a graph G and gamma(i)(G) is the independence-domination number of G, that is, the maximum, over all independent sets I in G, of the minimum number of vertices needed to dominate I. The equality gamma(i)(G) = gamma(G) is known to hold for all chordal graphs and for chordless cycles of length 0 (mod 3). We prove some results related to graphs for which the above equality holds. More specifically, we show that the problems of determining whether gamma(i)(G) = gamma(G) = 2 and of verifying whether gamma(i)(G) >= 2 are NP-complete, even if G is weakly chordal. We also initiate the study of the equality gamma(i) = gamma in the context of hereditary graph classes and exhibit two infinite families of graphs for which gamma(i) < gamma.
引用
收藏
页码:89 / 97
页数:9
相关论文
共 50 条
  • [21] On graphs with equal total domination and connected domination numbers
    Chen, XG
    APPLIED MATHEMATICS LETTERS, 2006, 19 (05) : 472 - 477
  • [22] On graphs with equal domination and 2-domination numbers
    Hansberg, Adriana
    Volkmann, Lutz
    DISCRETE MATHEMATICS, 2008, 308 (11) : 2277 - 2281
  • [23] Domination critical graphs with higher independent domination numbers
    Ao, S
    Cockayne, EJ
    MacGillivray, G
    Mynhardt, CM
    JOURNAL OF GRAPH THEORY, 1996, 22 (01) : 9 - 14
  • [24] Domination numbers of planar graphs
    MacGillivray, G
    Seyffarth, K
    JOURNAL OF GRAPH THEORY, 1996, 22 (03) : 213 - 229
  • [25] On rainbow domination numbers of graphs
    Shao, Zehui
    Liang, Meilian
    Yin, Chuang
    Xu, Xiaodong
    Pavlic, Polona
    Zerovnik, Janez
    INFORMATION SCIENCES, 2014, 254 : 225 - 234
  • [26] COMPARING UPPER BROADCAST DOMINATION AND BOUNDARY INDEPENDENCE BROADCAST NUMBERS OF GRAPHS
    Mynhardt, Kieka
    Neilson, Linda
    TRANSACTIONS ON COMBINATORICS, 2024, 13 (01) : 105 - 126
  • [27] Domination subdivision numbers in graphs
    Favaron, O
    Haynes, TW
    Hedetniemi, ST
    UTILITAS MATHEMATICA, 2004, 66 : 195 - 209
  • [28] On edge domination numbers of graphs
    Xu, BG
    DISCRETE MATHEMATICS, 2005, 294 (03) : 311 - 316
  • [29] Domination and independence numbers of large 2-crossing-critical graphs
    Irsic, Vesna
    Lekse, Marusa
    Paenik, Mihael
    Podlogar, Petra
    Praeek, Martin
    ARS MATHEMATICA CONTEMPORANEA, 2023, 23 (04)
  • [30] Cactus graphs with equal domination and complementary tree domination numbers
    Krishnakumari, B.
    Venkatakrishnan, Y. B.
    Ayyaswawy, S. K.
    ARS COMBINATORIA, 2018, 139 : 229 - 235