Fast level set multi-view stereo on graphics hardware

被引:0
|
作者
Labatut, Patrick [1 ]
Keriven, Renaud [1 ,2 ]
Pons, Jean-Philippe [2 ]
机构
[1] Ecole Normale Super, Dept Informat, 45 Rue Ulm, F-75005 Paris, France
[2] Ecole Natl Ponts & Chauss, CERTIS, F-77455 Paris, France
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we show the importance and feasibility of much faster multi-view stereo reconstruction algorithms relying almost exclusively on graphics hardware. Reconstruction algorithms have been steadily improving in the last few years and several state-of-the-art methods are nowadays reaching a very impressive level of quality. However all these modern techniques share a very lengthy computational time that completely forbids their more widespread use in practical setups: the typical running time of such algorithms range from one to several hours. One possible solution to this problem seems to lie in the use of graphics hardware: more and more computer vision techniques are taking advantage of the availability of cheap computational horsepower and divert graphics hardware from its original purpose to accelerate the early stages of some algorithms. We present here an almost full implementation on graphics hardware of a multi-view stereo algorithm based on surface deformation by a PDE: this algorithm tries to minimize the error between input images and predicted ones by reprojection via the surface. As it mainly works on whole images, it is well suited for graphics hardware. We show how we succeeded to bring the whole reconstruction time within minutes. Results for synthetic and real data sets are presented with computational times and compared with those of other state-of-the-art algorithms.
引用
收藏
页码:774 / 781
页数:8
相关论文
共 50 条
  • [31] Multi-View Stereo by Temporal Nonparametric Fusion
    Hou, Yuxin
    Kannala, Juho
    Solin, Arno
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 2651 - 2660
  • [32] Pyramid Multi-View Stereo with Local Consistency
    Liao, Jie
    Fu, Yanping
    Yan, Qingan
    Xiao, Chunxia
    COMPUTER GRAPHICS FORUM, 2019, 38 (07) : 335 - 346
  • [33] Multi-view stereo network with point attention
    Zhao, Rong
    Gu, Zhuoer
    Han, Xie
    He, Ligang
    Sun, Fusheng
    Jiao, Shichao
    APPLIED INTELLIGENCE, 2023, 53 (22) : 26622 - 26636
  • [34] Monocular multi-view stereo imaging system
    Jiang, W.
    Shimizu, M.
    Okutomi, M.
    JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, 2011, 6 : 10
  • [35] Multi-view stereo network with point attention
    Rong Zhao
    Zhuoer Gu
    Xie Han
    Ligang He
    Fusheng Sun
    Shichao Jiao
    Applied Intelligence, 2023, 53 : 26622 - 26636
  • [36] Tales of shape and radiance in multi-view stereo
    Soatto, S
    Yezzi, AJ
    Jin, HL
    NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, 2003, : 974 - 981
  • [37] Adaptive Pixelwise Inference Multi-View Stereo
    Sun, Shang
    Liu, Junjie
    Li, Yuanzhuo
    Ying, Haocong
    Zhai, Zhongguan
    Mou, Yurui
    THIRTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2021), 2022, 12083
  • [38] Image selection for improved multi-view stereo
    Hornung, Alexander
    Zeng, Boyi
    Kobbelt, Leif
    2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 2696 - 2703
  • [39] Multi-view Superpixel Stereo in Urban Environments
    Micusik, Branislav
    Kosecka, Jana
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 89 (01) : 106 - 119
  • [40] PatchmatchNet: Learned Multi-View Patchmatch Stereo
    Wang, Fangjinhua
    Galliani, Silvano
    Vogel, Christoph
    Speciale, Pablo
    Pollefeys, Marc
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 14189 - 14198