Analysis of inaccurate data with mixture measurement error models

被引:0
|
作者
Park, Seunghwan [1 ]
Kim, Jae-Kwang [2 ]
机构
[1] Univ Texas Austin, Dept Stat & Data Sci, Austin, TX 78712 USA
[2] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
Fractional imputation; Missing data; Survey sampling; REGRESSION-MODELS; MISSING DATA; SEMIPARAMETRIC ESTIMATION; COVARIATE DATA; EM ALGORITHM; IMPUTATION; 2-PHASE;
D O I
10.1016/j.jkss.2017.07.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Measurement error, the difference between a measured (observed) value of quantity and its true value, is perceived as a possible source of estimation bias in many surveys. To correct for such bias, a validation sample can be used in addition to the original sample for adjustment of measurement error. Depending on the type of validation sample, we can either use the internal calibration approach or the external calibration approach. Motivated by Korean Longitudinal Study of Aging (KLoSA), we propose a novel application of fractional imputation to correct for measurement error in the analysis of survey data. The proposed method is to create imputed values of the unobserved true variables, which are mis-measured in the main study, by using validation subsample. Furthermore, the proposed method can be directly applicable when the measurement error model is a mixture distribution. Variance estimation using Taylor linearization is developed. Results from a limited simulation study are also presented. (C) 2017 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [21] Multivariate measurement error models with normal mean-variance mixture distributions
    Mirfarah, Elham
    Naderi, Mehrdad
    Lin, Tsung-, I
    Wang, Wan-Lun
    STAT, 2022, 11 (01):
  • [22] Mixture models for analysis of melting temperature data
    Nellaker, Christoffer
    Uhrzander, Fredrik
    Tyrcha, Joanna
    Karlsson, Hakan
    BMC BIOINFORMATICS, 2008, 9 (1)
  • [23] Complex Data Analysis Using Mixture Models
    Ishiguro, Katsuhiko
    NTT Technical Review, 2011, 9 (01): : 43 - 49
  • [24] Bayesian mixture models for cytometry data analysis
    Lin, Lin
    Hejblum, Boris P.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2021, 13 (04)
  • [25] Mixture models for analysis of melting temperature data
    Christoffer Nellåker
    Fredrik Uhrzander
    Joanna Tyrcha
    Håkan Karlsson
    BMC Bioinformatics, 9
  • [26] Analysis of rounded data in measurement error regression
    Ningning Zhao
    Z. D. Bai
    Journal of the Korean Statistical Society, 2013, 42 : 415 - 429
  • [27] A measurement error model for microarray data analysis
    Zhou, YM
    Cheng, J
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2005, 15 (07) : 614 - 620
  • [28] Analysis of rounded data in measurement error regression
    Zhao, Ningning
    Bai, Z. D.
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2013, 42 (03) : 415 - 429
  • [29] A measurement error model for microarray data analysis
    ZHOU Yiming and CHENG Jing ( Department of Biological Sciences and Biotechnology
    State Key Laboratory of Biomembrane and Membrane Biotechnology
    National Engineering Research Center for Beijing Biochip Technology
    ProgressinNaturalScience, 2005, (07) : 614 - 620
  • [30] Estimation in Semiparametric Transition Measurement Error Models for Longitudinal Data
    Pan, Wenqin
    Zeng, Donglin
    Lin, Xihong
    BIOMETRICS, 2009, 65 (03) : 728 - 736