An Efficient Framework by Topic Model for Multi-label Text Classification

被引:0
|
作者
Sun, Wei [1 ]
Ran, Xiangying [1 ]
Luo, Xiangyang [1 ]
Wang, Chongjun [1 ]
机构
[1] Nanjing Univ, Natl Key Lab Novel Software Technol, Dept Comp Sci & Technol, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
multi-label text classification; topic model; label correlations;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most existing multi-label text classification (MLTC) approaches only exploit label correlations from label pairwises or label chains. However, in the real world, features of instances have much importance for classification. In this paper, we propose a simple but efficient framework for MLTC called Hybrid Latent Dirichlet Allocation Multi-Label (HLDAML). To be specific, the topics of text features (i.e., a concrete description of documents) and the topics of label sets (i.e., a summarization of documents) can be obtained from training data by topic model before building models for multi-label classification. After that, hybrid topics can be used in existing approaches to improve the performance of MLTC. Experiments on several benchmark datasets demonstrate that the proposed framework is general and effective when taking text features and label sets into consideration simultaneously. It is also worth mentioning that we construct a new multi-label dataset called Parkinson about diagnosing parkinson disease by Traditional Chinese Medicine.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Statistical topic models for multi-label document classification
    Rubin, Timothy N.
    Chambers, America
    Smyth, Padhraic
    Steyvers, Mark
    MACHINE LEARNING, 2012, 88 (1-2) : 157 - 208
  • [42] WiseTag: An Ensemble Method for Multi-label Topic Classification
    Liang, Guanqing
    Kao, Hsiaohsien
    Leung, Cane Wing-Ki
    He, Chao
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2018, PT II, 2018, 11109 : 479 - 489
  • [43] Hybrid Feature-Based Multi-label Text Classification-A Framework
    Agarwal, Nancy
    Wani, Mudasir Ahmad
    ELAffendi, Mohammed
    ADVANCES IN CYBERSECURITY, CYBERCRIMES, AND SMART EMERGING TECHNOLOGIES, 2023, 4 : 211 - 221
  • [44] A Neural Expectation-Maximization Framework for Noisy Multi-Label Text Classification
    Chen, Junfan
    Zhang, Richong
    Xu, Jie
    Hu, Chunming
    Mao, Yongyi
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (11) : 10992 - 11003
  • [45] Multi-label Text Classification Model Combining BiLSTM and Hypergraph Attention
    Wang, Xing
    Hu, HuiTing
    Zhu, GuoHua
    2024 4TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND ARTIFICIAL INTELLIGENCE, CCAI 2024, 2024, : 344 - 349
  • [46] Cognitive structure learning model for hierarchical multi-label text classification
    Wang, Boyan
    Hu, Xuegang
    Li, Peipei
    Yu, Philip S.
    KNOWLEDGE-BASED SYSTEMS, 2021, 218
  • [48] Hierarchical Sequence-to-Sequence Model for Multi-Label Text Classification
    Yang, Zhenyu
    Liu, Guojing
    IEEE ACCESS, 2019, 7 : 153012 - 153020
  • [49] Label-text bi-attention capsule networks model for multi-label text classification
    Wang, Gang
    Du, Yajun
    Jiang, Yurui
    Liu, Jia
    Li, Xianyong
    Chen, Xiaoliang
    Gao, Hongmei
    Xie, Chunzhi
    Lee, Yan-li
    NEUROCOMPUTING, 2024, 588
  • [50] Multi-label Classification of Legal Text with Fusion of Label Relations
    Song Z.
    Li Y.
    Li D.
    Wang S.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2022, 35 (02): : 185 - 192