Pseudo-integral and generalized Choquet integral

被引:21
|
作者
Zhang, Deli [1 ]
Mesiar, Radko [2 ,3 ]
Pap, Endre [4 ]
机构
[1] Changchun Normal Univ, Coll Math, Changchun 130032, Jilin, Peoples R China
[2] Slovak Univ Technol Bratislava, Fac Civil Engn, Radlinskeho 11, Bratislava 81005, Slovakia
[3] Palacky Univ, Olomouc,17 listopadu 12, Olomouc 77146, Czech Republic
[4] Singidunum Univ, Danijelova 29, Belgrade 11000, Serbia
关键词
Semiring; Pseudo; -integral; Choquet integral; Fuzzy integral; Generalized Choquet integral; CONVERGENCE THEOREMS; PRE-AGGREGATION; AUTOCONTINUITY; INEQUALITY;
D O I
10.1016/j.fss.2020.12.005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Due to many applications, the Choquet integral as a powerful tool for modeling non-deterministic problems needs to be further extended. Therefore the paper is devoted to a generalization of the Choquet integral. As a basis, the pseudo-integral for bounded integrand is extended to the case for nonnegative integrands at first, and then the generalized Choquet integral is defined. As special cases, pseudo-Choquet Stieltjes integrals, pseudo-fuzzy Stieltjes integrals, g-Choquet integrals, pseudo-(N)fuzzy integrals and pseudo-(S)fuzzy integrals are obtained, and various kinds of properties and convergence theorems are shown, meanwhile Markov, Jensen, Minkowski and Holder inequalities are proved. In the end, the generalized discrete Choquet integral is discussed. The obtained results for the generalized Choquet integral cover some previous results on different types of nonadditive integrals.(c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:193 / 221
页数:29
相关论文
共 50 条
  • [21] Pseudo-integral of set-valued functions
    Grbic, Tatjana
    Stajner-Papuga, Ivana
    Nedovic, Ljubo
    NEW DIMENSIONS IN FUZZY LOGIC AND RELATED TECHNOLOGIES, VOL I, PROCEEDINGS, 2007, : 221 - +
  • [22] Generalization of the Jensen's inequality for pseudo-integral
    Pap, Endre
    Strboja, Mirjana
    2008 6TH INTERNATIONAL SYMPOSIUM ON INTELLIGENT SYSTEMS AND INFORMATICS, 2008, : 173 - 175
  • [23] Extensions of Holder's Inequality via Pseudo-Integral
    Tian, Jing-Feng
    Ha, Ming-Hu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [24] Generalizations of The Feng Qi Type Inequality For Pseudo-Integral
    Daraby, Bayaz
    Shafiloo, Amir
    Rahimi, Asghar
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2015, 28 (04): : 695 - 702
  • [25] A generalized Hellinger distance for Choquet integral
    Agahi, Hamzeh
    FUZZY SETS AND SYSTEMS, 2020, 396 : 42 - 50
  • [26] A generalized Hellinger distance for Choquet integral
    Agahi, Hamzeh
    1600, Elsevier B.V. (396): : 42 - 50
  • [27] Three types of generalized Choquet integral
    Endre Pap
    Bollettino dell'Unione Matematica Italiana, 2020, 13 : 545 - 553
  • [28] Three types of generalized Choquet integral
    Pap, Endre
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2020, 13 (04): : 545 - 553
  • [29] Generalized Choquet Integral for Face Recognition
    Paweł Karczmarek
    Adam Kiersztyn
    Witold Pedrycz
    International Journal of Fuzzy Systems, 2018, 20 : 1047 - 1055
  • [30] Generalized Choquet Integral for Face Recognition
    Karczmarek, Pawel
    Kiersztyn, Adam
    Pedrycz, Witold
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2018, 20 (03) : 1047 - 1055