Pseudo-integral and generalized Choquet integral

被引:21
|
作者
Zhang, Deli [1 ]
Mesiar, Radko [2 ,3 ]
Pap, Endre [4 ]
机构
[1] Changchun Normal Univ, Coll Math, Changchun 130032, Jilin, Peoples R China
[2] Slovak Univ Technol Bratislava, Fac Civil Engn, Radlinskeho 11, Bratislava 81005, Slovakia
[3] Palacky Univ, Olomouc,17 listopadu 12, Olomouc 77146, Czech Republic
[4] Singidunum Univ, Danijelova 29, Belgrade 11000, Serbia
关键词
Semiring; Pseudo; -integral; Choquet integral; Fuzzy integral; Generalized Choquet integral; CONVERGENCE THEOREMS; PRE-AGGREGATION; AUTOCONTINUITY; INEQUALITY;
D O I
10.1016/j.fss.2020.12.005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Due to many applications, the Choquet integral as a powerful tool for modeling non-deterministic problems needs to be further extended. Therefore the paper is devoted to a generalization of the Choquet integral. As a basis, the pseudo-integral for bounded integrand is extended to the case for nonnegative integrands at first, and then the generalized Choquet integral is defined. As special cases, pseudo-Choquet Stieltjes integrals, pseudo-fuzzy Stieltjes integrals, g-Choquet integrals, pseudo-(N)fuzzy integrals and pseudo-(S)fuzzy integrals are obtained, and various kinds of properties and convergence theorems are shown, meanwhile Markov, Jensen, Minkowski and Holder inequalities are proved. In the end, the generalized discrete Choquet integral is discussed. The obtained results for the generalized Choquet integral cover some previous results on different types of nonadditive integrals.(c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:193 / 221
页数:29
相关论文
共 50 条
  • [1] A PSEUDO-INTEGRAL
    BLAU, JH
    AMERICAN MATHEMATICAL MONTHLY, 1961, 68 (07): : 677 - &
  • [2] GENERALIZED MINKOWSKI TYPE INEQUALITY FOR PSEUDO-INTEGRAL
    Strboja, Mirjana
    Mihailovic, Biljana
    MATHEMATICA SLOVACA, 2021, 71 (01) : 57 - 74
  • [3] Generalized Minkowski type inequality for pseudo-integral
    Mihailovic, Biljana
    Strboja, Mirjana
    2017 IEEE 15TH INTERNATIONAL SYMPOSIUM ON INTELLIGENT SYSTEMS AND INFORMATICS (SISY), 2017, : 99 - 104
  • [4] General pseudo-integral
    Pap, Endre
    Szakal, Aniko
    2015 IEEE 10TH JUBILEE INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI), 2015, : 459 - 464
  • [5] PSEUDO-INTEGRAL OPERATORS
    SOUROUR, AR
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 253 (SEP) : 339 - 363
  • [6] Fubini theorem and generalized Minkowski inequality for the pseudo-integral
    Zhang, Deli
    Pap, Endre
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2020, 122 : 9 - 23
  • [7] Discrete bipolar pseudo-integral
    Strboja, Mirjana
    Pap, Endre
    Mihailovic, Biljana
    2016 IEEE 14TH INTERNATIONAL SYMPOSIUM ON INTELLIGENT SYSTEMS AND INFORMATICS (SISY), 2016, : 123 - 127
  • [8] Classical inequalities for pseudo-integral
    Jain, Pankaj
    GEORGIAN MATHEMATICAL JOURNAL, 2022, 29 (03) : 373 - 385
  • [9] PSEUDO-INTEGRAL MULTILINEAR AND POLYNOMIAL OPERATORS
    Kusraeva Z.A.
    Journal of Mathematical Sciences, 2024, 280 (5) : 821 - 830
  • [10] Generalization of the Chebyshev inequality for pseudo-integral
    Pap, Endre
    Strboja, Mirjana
    2009 7TH INTERNATIONAL SYMPOSIUM ON INTELLIGENT SYSTEMS AND INFORMATICS, 2009, : 107 - 110