Concrete and abstract models of category learning

被引:0
|
作者
Langley, P [1 ]
机构
[1] Inst Study Learning & Expertise, Palo Alto, CA 94306 USA
关键词
D O I
暂无
中图分类号
H [语言、文字];
学科分类号
05 ;
摘要
In this paper, we compare the rhetoric that sometimes appears in the literature on computational models of category learning with the growing evidence that different theoretical paradigms typically produce similar results. In response, we suggest that concrete computational models, which currently dominate the field, may be less useful than simulations that operate at a more abstract level. We illustrate this point with an abstract simulation that explains a challenging phenomenon in the area of category learning - the effect of consistent contrasts - and we conclude with some general observations about such abstract models.
引用
收藏
页码:288 / 293
页数:6
相关论文
共 50 条