Discrepancy curves for multi-parameter regularization

被引:17
|
作者
Lu, Shuai [1 ,2 ]
Pereverzev, Sergei V. [1 ]
Shao, Yuanyuan [3 ]
Tautenhahn, Ulrich [3 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Univ Appl Sci Zittau Gorlitz, Dept Math, D-02755 Zittau, Germany
来源
关键词
Ill-posed problems; inverse problems; noisy right-hand side; Tikhonov regularization; multi-parameter regularization; discrepancy principle; order optimal error bounds; Newton's method; global convergence; monotone convergence; HILBERT SCALES; TIKHONOV REGULARIZATION; PRINCIPLE;
D O I
10.1515/JIIP.2010.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For solving linear ill-posed problems regularization methods are required when the right-hand side is with some noise. In the present paper regularized solutions are obtained by multi-parameter regularization and the regularization parameters are chosen by a multi-parameter discrepancy principle. Under certain smoothness assumptions we provide order optimal error bounds that characterize the accuracy of the regularized solutions. For the computation of the regularization parameters fast algorithms of Newton type are applied which are based on special transformations. These algorithms are globally and monotonically convergent. Some of our theoretical results are illustrated by numerical experiments. We also show how the proposed approach may be employed for multi-task approximation.
引用
收藏
页码:655 / 676
页数:22
相关论文
共 50 条
  • [11] Seismic acoustic impedance inversion with multi-parameter regularization
    Li, Shu
    Peng, Zhenming
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2017, 14 (03) : 520 - 532
  • [12] Bifurcation set of multi-parameter families of complex curves
    Joita, Cezar
    Tibar, Mihai
    JOURNAL OF TOPOLOGY, 2018, 11 (03) : 739 - 751
  • [13] Multi-parameter multiplicative regularization: An application to force reconstruction problems
    Aucejo, M.
    De Smet, O.
    JOURNAL OF SOUND AND VIBRATION, 2020, 469
  • [14] Multi-Parameter Regularization Method for Synthetic Aperture Imaging Radiometers
    Yang, Xiaocheng
    Yang, Zhenyi
    Yan, Jingye
    Wu, Lin
    Jiang, Mingfeng
    REMOTE SENSING, 2021, 13 (03) : 1 - 15
  • [15] Multi-parameter Tikhonov regularization with the l0 sparsity constraint
    Wang, Wei
    Lu, Shuai
    Mao, Heng
    Cheng, Jin
    INVERSE PROBLEMS, 2013, 29 (06)
  • [16] Multi-parameter regularization method for particle sizing of forward light scattering
    Lin, Chengjun
    Shen, Jianqi
    Wang, Tian'en
    JOURNAL OF MODERN OPTICS, 2017, 64 (08) : 787 - 798
  • [17] A Multi-parameter Regularization Model for Deblurring Images Corrupted by Impulsive Noise
    Jiang, Dandan
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2017, 36 (09) : 3702 - 3730
  • [18] Tikhonov regularization stabilizes multi-parameter estimation of geothermal heat exchangers
    Du, Yufang
    Li, Min
    Li, Yong
    Lai, Alvin C. K.
    ENERGY, 2023, 262
  • [19] A Multi-Parameter Regularization Method in Downward Continuation for Airborne Gravity Data
    Xu X.
    Zhao J.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2020, 45 (07): : 956 - 963and973
  • [20] Multi-parameter regularization techniques for ill-conditioned linear systems
    Brezinski, C
    Redivo-Zaglia, M
    Rodriguez, G
    Seatzu, S
    NUMERISCHE MATHEMATIK, 2003, 94 (02) : 203 - 228