Spatio-Spectral Remote Sensing Image Classification With Graph Kernels

被引:103
|
作者
Camps-Valls, Gustavo [1 ]
Shervashidze, Nino [2 ]
Borgwardt, Karsten M. [2 ]
机构
[1] Univ Valencia, Image Proc Lab, Valencia 46980, Spain
[2] Max Planck Inst, D-72076 Tubingen, Germany
关键词
Graphs; kernel methods; spatio-spectral image classification; support vector machine (SVM);
D O I
10.1109/LGRS.2010.2046618
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter presents a graph kernel for spatio-spectral remote sensing image classification with support vector machines (SVMs). The method considers higher order relations in the neighborhood (beyond pairwise spatial relations) to iteratively compute a kernel matrix for SVM learning. The proposed kernel is easy to compute and constitutes a powerful alternative to existing approaches. The capabilities of the method are illustrated in several multi- and hyperspectral remote sensing images acquired over both urban and agricultural areas.
引用
收藏
页码:741 / 745
页数:5
相关论文
共 50 条
  • [21] Sparse Graph Regularization for Hyperspectral Remote Sensing Image Classification
    Xue, Zhaohui
    Du, Peijun
    Li, Jun
    Su, Hongjun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (04): : 2351 - 2366
  • [22] Image classification with segmentation graph kernels
    Harchaoui, Zaied
    Bach, Francis
    2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 612 - +
  • [23] Hyperspectral Image Denoising Using Spatio-Spectral Total Variation
    Aggarwal, Hemant Kumar
    Majumdar, Angshul
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (03) : 442 - 446
  • [24] Spectral image reconstruction using an edge preserving spatio-spectral Wiener estimation
    Urban, Philipp
    Rosen, Mitchell R.
    Berns, Roy S.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2009, 26 (08) : 1865 - 1875
  • [25] Spectral Image Fusion for Increasing the Spatio-Spectral Resolution Through Side Information
    Jerez, Andres
    Garcia, Hans
    Arguello, Henry
    APPLICATIONS OF COMPUTATIONAL INTELLIGENCE, COLCACI 2018, 2018, 833 : 165 - 176
  • [26] Spectral image reconstruction using an edge preserving spatio-spectral Wiener estimation
    Urban, Philipp
    Rosen, Mitchell R.
    Berns, Roy S.
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2009, 26 (08): : 1866 - 1876
  • [27] Joint spatial and spectral analysis for remote sensing image classification
    Zheng, Hao
    Shen, Linlin
    Jia, Sen
    MIPPR 2011: MULTISPECTRAL IMAGE ACQUISITION, PROCESSING, AND ANALYSIS, 2011, 8002
  • [28] Spatio-spectral concentration of convolutions
    Hanasoge, Shravan M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 313 : 674 - 686
  • [29] Composite kernels conditional random fields for remote-sensing image classification
    Wu, Junfeng
    Jiang, Zhiguo
    Luo, Jianwei
    Zhang, Haopeng
    ELECTRONICS LETTERS, 2014, 50 (22) : 1589 - 1590
  • [30] Semi-Supervised Hyperspectral Image Classification Using Spatio-Spectral Laplacian Support Vector Machine
    Yang, Lixia
    Yang, Shuyuan
    Jin, Penglei
    Zhang, Rui
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (03) : 651 - 655