Spatio-Spectral Remote Sensing Image Classification With Graph Kernels

被引:103
|
作者
Camps-Valls, Gustavo [1 ]
Shervashidze, Nino [2 ]
Borgwardt, Karsten M. [2 ]
机构
[1] Univ Valencia, Image Proc Lab, Valencia 46980, Spain
[2] Max Planck Inst, D-72076 Tubingen, Germany
关键词
Graphs; kernel methods; spatio-spectral image classification; support vector machine (SVM);
D O I
10.1109/LGRS.2010.2046618
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter presents a graph kernel for spatio-spectral remote sensing image classification with support vector machines (SVMs). The method considers higher order relations in the neighborhood (beyond pairwise spatial relations) to iteratively compute a kernel matrix for SVM learning. The proposed kernel is easy to compute and constitutes a powerful alternative to existing approaches. The capabilities of the method are illustrated in several multi- and hyperspectral remote sensing images acquired over both urban and agricultural areas.
引用
收藏
页码:741 / 745
页数:5
相关论文
共 50 条
  • [1] Graph Spatio-Spectral Total Variation Model for Hyperspectral Image Denoising
    Takemoto, Shingo
    Naganuma, Kazuki
    Ono, Shunsuke
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [2] Automatic Feature Learning for Spatio-Spectral Image Classification With Sparse SVM
    Tuia, Devis
    Volpi, Michele
    Mura, Mauro Dalla
    Rakotomamonjy, Alain
    Flamary, Remi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (10): : 6062 - 6074
  • [3] A new spatio-spectral morphological segmentation for multi-spectral remote-sensing images
    Noyel, G.
    Angulo, J.
    Jeulin, D.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2010, 31 (22) : 5895 - 5920
  • [4] Classification of Remote Sensing Image Using SVM Kernels
    Mankar, Neha V.
    Khobragade, Anand
    Raghuwanshi, M. M.
    2016 WORLD CONFERENCE ON FUTURISTIC TRENDS IN RESEARCH AND INNOVATION FOR SOCIAL WELFARE (STARTUP CONCLAVE), 2016,
  • [5] Semisupervised Remote Sensing Image Classification With Cluster Kernels
    Tuia, Devis
    Camps-Valls, Gustavo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (02) : 224 - 228
  • [6] An adaptive spatio-spectral domain correlation parallel framework for hyperspectral image classification
    Wang, Xianchen
    Xie, Weixin
    PROCEEDINGS OF 2018 14TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2018, : 350 - 354
  • [7] Sparse Spatio-Spectral LapSVM With Semisupervised Kernel Propagation for Hyperspectral Image Classification
    Yang, Lixia
    Wang, Min
    Yang, Shuyuan
    Zhang, Rui
    Zhang, Pingting
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (05) : 2046 - 2054
  • [8] Introduction of Spatio-Spectral Indices for Using Spatial Data in Multispectral Image Classification
    Ashoori, Hamed
    Zoej, Mohamad Javad Valadan
    Sahebi, Mahmod Reza
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2019, 47 (06) : 1003 - 1017
  • [9] Introduction of Spatio-Spectral Indices for Using Spatial Data in Multispectral Image Classification
    Hamed Ashoori
    Mohamad Javad Valadan Zoej
    Mahmod Reza Sahebi
    Journal of the Indian Society of Remote Sensing, 2019, 47 : 1003 - 1017
  • [10] Spatio-Spectral Exploration Combining In Situ and Remote Measurements
    Thompson, David R.
    Wettergreen, David
    Foil, Greydon
    Furlong, Michael
    Kiran, Anatha Ravi
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 3679 - 3685