Generative Adversarial Networks Based on Collaborative Learning and Attention Mechanism for Hyperspectral Image Classification

被引:87
|
作者
Feng, Jie [1 ]
Feng, Xueliang [1 ]
Chen, Jiantong [1 ]
Cao, Xianghai [1 ]
Zhang, Xiangrong [1 ]
Jiao, Licheng [1 ]
Yu, Tao [2 ]
机构
[1] Xidian Univ, Key Lab Intelligent Percept & Image Understanding, Minist Educ, Xian 710071, Peoples R China
[2] Chinese Acad Sci, Key Lab Spectral Imaging Technol, Beijing 100864, Peoples R China
基金
中国国家自然科学基金;
关键词
generative adversarial networks; hyperspectral image classification; collaborative learning; hard attention module; convolutional LSTM; SPECTRAL-SPATIAL CLASSIFICATION; SPARSE REPRESENTATION;
D O I
10.3390/rs12071149
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Classifying hyperspectral images (HSIs) with limited samples is a challenging issue. The generative adversarial network (GAN) is a promising technique to mitigate the small sample size problem. GAN can generate samples by the competition between a generator and a discriminator. However, it is difficult to generate high-quality samples for HSIs with complex spatial-spectral distribution, which may further degrade the performance of the discriminator. To address this problem, a symmetric convolutional GAN based on collaborative learning and attention mechanism (CA-GAN) is proposed. In CA-GAN, the generator and the discriminator not only compete but also collaborate. The shallow to deep features of real multiclass samples in the discriminator assist the sample generation in the generator. In the generator, a joint spatial-spectral hard attention module is devised by defining a dynamic activation function based on a multi-branch convolutional network. It impels the distribution of generated samples to approximate the distribution of real HSIs both in spectral and spatial dimensions, and it discards misleading and confounding information. In the discriminator, a convolutional LSTM layer is merged to extract spatial contextual features and capture long-term spectral dependencies simultaneously. Finally, the classification performance of the discriminator is improved by enforcing competitive and collaborative learning between the discriminator and generator. Experiments on HSI datasets show that CA-GAN obtains satisfactory classification results compared with advanced methods, especially when the number of training samples is limited.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Generative Adversarial Networks and Conditional Random Fields for Hyperspectral Image Classification
    Zhong, Zilong
    Li, Jonathan
    Clausi, David A.
    Wong, Alexander
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (07) : 3318 - 3329
  • [22] Image Generation Using generative Adversarial Networks and Attention Mechanism
    Kataoka, Yuusuke
    Matsubara, Takashi
    Uehara, Kuniaki
    2016 IEEE/ACIS 15TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS), 2016, : 933 - 938
  • [23] Generative Adversarial Networks and Probabilistic Graph Models for Hyperspectral Image Classification
    Zhong, Zilong
    Li, Jonathan
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 8191 - 8192
  • [24] Hyperspectral Image Classification Based on Residual Generative Adversarial Network
    Chen Ming
    Xi Xiangyun
    Wang Yang
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (22)
  • [25] HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON GENERATIVE ADVERSARIAL NETWORK WITH DROPBLOCK
    Yin, Jihao
    Li, Wenyue
    Han, Bingnan
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 405 - 409
  • [26] Hyperspectral Image Classification Based on Transformer and Generative Adversarial Network
    Wang, Yajie
    Shi, Zhonghui
    Han, Shengyu
    Wei, Zhihao
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III, 2022, 13631 : 212 - 225
  • [27] Collaborative Learning of Generative Adversarial Networks
    Tsukahara, Takuya
    Hirakawa, Tsubasa
    Yamashita, Takayoshi
    Fujiyoshi, Hironobu
    VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 5: VISAPP, 2021, : 492 - 499
  • [28] Hyperspectral Image Classification Based on Visible-Infrared Sensors and Residual Generative Adversarial Networks
    Su, Hui-Wei
    Tan, Ri-hui
    Chen, Chih-Cheng
    Hu, Zhongzheng
    Shankaranarayanan, Avinash
    SENSORS AND MATERIALS, 2021, 33 (11) : 4045 - 4056
  • [29] Spectral-Spatial Attention Feature Extraction for Hyperspectral Image Classification Based on Generative Adversarial Network
    Liang, Hongbo
    Bao, Wenxing
    Shen, Xiangfei
    Zhang, Xiaowu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 10017 - 10032
  • [30] SEMI-SUPERVISED VARIATIONAL GENERATIVE ADVERSARIAL NETWORKS FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Wang, Hao
    Tao, Chao
    Qi, Ji
    Li, HaiFeng
    Tang, YuQi
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 9792 - 9794