Stability of single-atom catalysts for electrocatalysis

被引:69
|
作者
Hu, Hao [1 ]
Wang, Jiale [1 ]
Tao, Peng [1 ]
Song, Chengyi [1 ]
Shang, Wen [1 ]
Deng, Tao [1 ,2 ]
Wu, Jianbo [1 ,2 ,3 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Ctr Hydrogen Sci, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Mat Genome Initiat Ctr, Shanghai 200240, Peoples R China
[4] Shanghai Jiao Tong Univ, Zhangjiang Inst Adv Study, Future Mat Innovat Ctr, Shanghai 200240, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
METAL-SUPPORT INTERACTIONS; CO OXIDATION; ORGANIC FRAMEWORKS; EVOLUTION REACTION; OXYGEN; REDUCTION; EFFICIENT; HYDROGEN; PERFORMANCE; MODEL;
D O I
10.1039/d1ta08582d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single-atom catalysts (SACs) have recently attracted significant attention due to their maximum atom utilization and high efficiency in a series of electrocatalytic reactions. However, the atomically dispersed metal atoms have intrinsically extreme mobility due to their high surface energy. Besides, the harsh reaction conditions of electrocatalysis also challenged the catalytic stability of SACs. The excellent electrocatalytic performance of SACs always degrades under long-term operating conditions. Most previous studies of SACs have focused more on the activity and selectivity of SACs in electrocatalysis, while catalytic stability has received little attention as a more critical factor limiting their large-scale industrial application. In this review, we provide an overview of the recent advances in SACs in terms of selecting the metal and support materials, synthetic strategies, and electrocatalytic applications with a focus on catalytic stability. A deep understanding of the instability behaviors of SACs under different electrocatalytic conditions contributes to the design of effective synthetic strategies to further optimize their catalytic stability, which is particularly discussed. Finally, we present the challenges and prospects for the future development of stable SACs in electrocatalysis.
引用
收藏
页码:5835 / 5849
页数:15
相关论文
共 50 条
  • [41] Applications of single-atom catalysts
    Zhang, Qiaoqiao
    Guan, Jingqi
    NANO RESEARCH, 2022, 15 (01) : 38 - 70
  • [42] Surprised by exceptional stability of confined single-atom cluster catalysts
    Aiqin Wang
    Tao Zhang
    ScienceChina(Materials), 2024, 67 (05) : 1676 - 1677
  • [43] Theoretical Approach To Predict the Stability of Supported Single-Atom Catalysts
    Su, Ya-Qiong
    Wang, Yifan
    Liu, Jin-Xun
    Filot, Ivo A. W.
    Alexopoulos, Konstantinos
    Zhang, Long
    Muravev, Valerii
    Zijlstra, Bart
    Vlachos, Dionisios G.
    Hensen, Emiel J. M.
    ACS CATALYSIS, 2019, 9 (04): : 3289 - +
  • [44] Single-Atom Catalysts: Advances and Challenges in Metal-Support Interactions for Enhanced Electrocatalysis
    Mu, Yang
    Wang, Tingting
    Zhang, Jian
    Meng, Changgong
    Zhang, Yifu
    Kou, Zongkui
    ELECTROCHEMICAL ENERGY REVIEWS, 2022, 5 (01) : 145 - 186
  • [45] High-entropy single-atom activated carbon catalysts for sustainable oxygen electrocatalysis
    Lei, Xin
    Tang, Qingyun
    Zheng, Yongping
    Kidkhunthod, Pinit
    Zhou, Xiaolong
    Ji, Bifa
    Tang, Yongbing
    NATURE SUSTAINABILITY, 2023, 6 (07) : 816 - 826
  • [46] Single-Atom Catalysts: Advances and Challenges in Metal-Support Interactions for Enhanced Electrocatalysis
    Yang Mu
    Tingting Wang
    Jian Zhang
    Changgong Meng
    Yifu Zhang
    Zongkui Kou
    Electrochemical Energy Reviews, 2022, 5 : 145 - 186
  • [47] Electronic structure regulation of the Fe-based single-atom catalysts for oxygen electrocatalysis
    Wang, Xiaochen
    Kang, Zhiwen
    Wang, Dan
    Zhao, Yafei
    Xiang, Xu
    Shang, Huishan
    Zhang, Bing
    NANO ENERGY, 2024, 121
  • [48] Regulating Electronic Structure of Single-Atom Catalysts toward Efficient Bifunctional Oxygen Electrocatalysis
    Ji, Jiapeng
    Wu, Lei
    Zhou, Shiyu
    Qiu, Tong
    Li, Zeheng
    Wang, Liguang
    Zhang, Liang
    Ma, Lu
    Ling, Min
    Zhou, Shaodong
    Liang, Chengdu
    SMALL METHODS, 2022, 6 (04)
  • [49] Inorganic crystal-supported precious metal single-atom catalysts for photo/ electrocatalysis
    Liu, Zhi
    Zhang, Zhihang
    Fu, Longyi
    Wang, Meiling
    Zhou, Jiadong
    NANO ENERGY, 2024, 128
  • [50] High-entropy single-atom activated carbon catalysts for sustainable oxygen electrocatalysis
    Xin Lei
    Qingyun Tang
    Yongping Zheng
    Pinit Kidkhunthod
    Xiaolong Zhou
    Bifa Ji
    Yongbing Tang
    Nature Sustainability, 2023, 6 : 816 - 826