ON THE HEAT FLOW EQUATION OF SURFACES OF CONSTANT MEAN CURVATURE IN HIGHER DIMENSIONS

被引:0
|
作者
Tan Zhong [1 ]
Wu Guochun [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
关键词
heat equation; mean curvature; higher dimensions; MINIMAL-SURFACES; H-SYSTEMS; PLATEAU; EXISTENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the heat flow for the H-system with constant mean curvature in higher dimensions. We give sufficient conditions on the initial data such that the heat flow develops finite time singularity. We also provide a new set of initial data to guarantee the existence of global regular solution to the heat flow, that converges to zero in W-1,W-n with the decay rate t(2/2-n) as time goes to infinity.
引用
收藏
页码:1741 / 1748
页数:8
相关论文
共 50 条
  • [31] Existence and regularity of mean curvature flow with transport term in higher dimensions
    Keisuke Takasao
    Yoshihiro Tonegawa
    Mathematische Annalen, 2016, 364 : 857 - 935
  • [32] GAUSS CURVATURE ESTIMATES FOR SURFACES OF CONSTANT MEAN CURVATURE
    SPRUCK, J
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (04) : 547 - 557
  • [33] WEAK SOLUTIONS TO THE HEAT FLOW FOR SURFACES OF PRESCRIBED MEAN CURVATURE
    Boegelein, Verena
    Duzaar, Frank
    Scheven, Christoph
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (09) : 4633 - 4677
  • [34] Helicoidal surfaces in Minkowski space with constant mean curvature and constant Gauss curvature
    Lopez, Rafael
    Demir, Esma
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (09): : 1349 - 1361
  • [35] Mean curvature flow with a constant forcing
    Liu, Zuhan
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (03): : 621 - 649
  • [36] Mean curvature flow with a constant forcing
    Zuhan Liu
    Nonlinear Differential Equations and Applications NoDEA, 2013, 20 : 621 - 649
  • [37] Complete surfaces of constant anisotropic mean curvature
    Galvez, Jose A.
    Mira, Pablo
    Tassi, Marcos P.
    ADVANCES IN MATHEMATICS, 2023, 428
  • [38] Gap phenomena for constant mean curvature surfaces
    Barbosa, Ezequiel
    Cavalcante, Marcos P.
    Pereira, Edno
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (04) : 2035 - 2051
  • [39] SURFACES WITH CONSTANT MEAN CURVATURE IN RIEMANNIAN PRODUCTS
    De Lira, Jorge H. S.
    Vitorio, Feliciano A.
    QUARTERLY JOURNAL OF MATHEMATICS, 2010, 61 (01): : 33 - 41
  • [40] Stability of helicoidal surfaces with constant mean curvature
    Hatakeyama, Yuta
    Koiso, Miyuki
    INTERNATIONAL JOURNAL OF MATHEMATICS FOR INDUSTRY, 2020, 12 (01):