Quantum symmetry algebras of spin systems related to Temperley-Lieb R-matrices

被引:14
|
作者
Kulish, P. P. [1 ]
Manojlovic, N. [2 ,3 ]
Nagy, Z. [2 ,3 ]
机构
[1] St Petersberg Dept Steklov Math Inst, St Petersburg 191023, Russia
[2] Univ Algarve, FCT, Dept Matemat, PT-8005139 Faro, Portugal
[3] Univ Lisbon, Grp Fis Matemat, P-1699 Lisbon, Portugal
关键词
MODELS; ANALOG;
D O I
10.1063/1.2873025
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A reducible representation of the Temperley-Lieb algebra is constructed on the tensor product of n-dimensional spaces. One obtains as a centralizer of this action a quantum algebra (a quasitriangular Hopf algebra) U-q with a representation ring equivalent to the representation ring of the sl(2) Lie algebra. This algebra U-q is the symmetry algebra of the corresponding open spin chain. (C) 2008 American Institute of Physics.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Reflection k-matrices related to Temperley-Lieb R-matrices
    Avan, J.
    Kulish, P. P.
    Rollet, G.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2011, 169 (02) : 1530 - 1538
  • [2] Reflection k-matrices related to Temperley-Lieb R-matrices
    J. Avan
    P. P. Kulish
    G. Rollet
    Theoretical and Mathematical Physics, 2011, 169 : 1530 - 1538
  • [3] Temperley-Lieb R-matrices from generalized Hadamard matrices
    Avan, J.
    Fonseca, T.
    Frappat, L.
    Kulish, P. P.
    Ragoucy, E.
    Rollet, G.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2014, 178 (02) : 223 - 238
  • [4] Temperley-Lieb R-matrices from generalized Hadamard matrices
    J. Avan
    T. Fonseca
    L. Frappat
    P. P. Kulish
    E. Ragoucy
    G. Rollet
    Theoretical and Mathematical Physics, 2014, 178 : 223 - 238
  • [5] Reflection matrices from Hadamard-type Temperley-Lieb R-matrices
    J. Avan
    P. P. Kulish
    G. Rollet
    Theoretical and Mathematical Physics, 2014, 179 : 387 - 394
  • [6] On spin systems related to the Temperley-Lieb algebra
    Kulish, PP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (38): : L489 - L493
  • [7] SPIN-S QUANTUM CHAINS AND TEMPERLEY-LIEB ALGEBRAS
    BATCHELOR, MT
    BARBER, MN
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (01): : L15 - L21
  • [8] Simple modules for Temperley-Lieb algebras and related algebras
    Andersen, Henning Haahr
    JOURNAL OF ALGEBRA, 2019, 520 : 276 - 308
  • [9] The homology of the Temperley-Lieb algebras
    Boyd, Rachael
    Hepworth, Richard
    GEOMETRY & TOPOLOGY, 2024, 28 (03) : 1437 - 1499
  • [10] PRESENTATIONS FOR TEMPERLEY-LIEB ALGEBRAS
    East, James
    QUARTERLY JOURNAL OF MATHEMATICS, 2021, 72 (04): : 1253 - 1269