SPIN-S QUANTUM CHAINS AND TEMPERLEY-LIEB ALGEBRAS

被引:38
|
作者
BATCHELOR, MT
BARBER, MN
机构
[1] AUSTRALIAN NATL UNIV,CTR MATH ANAL,SCH MATH SCI,CANBERRA,ACT 2601,AUSTRALIA
[2] AUSTRALIAN NATL UNIV,DEPT MATH,CANBERRA,ACT 2601,AUSTRALIA
来源
关键词
D O I
10.1088/0305-4470/23/1/004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The authors construct a family of isotropic spin-s quantum chains consisting of sums of operators satisfying a Temperley-Lieb algebra. Exact values for the infinite lattice limit of the ground-state energy per site and for the (non-zero) gap to the lowest energy excited state follow from the Temperley-Lieb equivalence with a Bethe ansatz soluble XXZ model. The family of spin chains includes the biquadratic spin-1 model.
引用
收藏
页码:L15 / L21
页数:7
相关论文
共 50 条
  • [1] Bethe ansatz solutions for Temperley-Lieb quantum spin chains
    Ghiotto, RCT
    Malvezzi, AL
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2000, 15 (21): : 3395 - 3425
  • [2] The homology of the Temperley-Lieb algebras
    Boyd, Rachael
    Hepworth, Richard
    GEOMETRY & TOPOLOGY, 2024, 28 (03) : 1437 - 1499
  • [3] The quantum spin chains of Temperley-Lieb type and the topological basis states
    Sun, Chunfang
    Xue, Kang
    Wang, Gangcheng
    Zhou, Chengcheng
    Du, Guijiao
    QUANTUM INFORMATION PROCESSING, 2013, 12 (09) : 3079 - 3092
  • [4] PRESENTATIONS FOR TEMPERLEY-LIEB ALGEBRAS
    East, James
    QUARTERLY JOURNAL OF MATHEMATICS, 2021, 72 (04): : 1253 - 1269
  • [5] Monomials and Temperley-Lieb algebras
    Fan, CK
    Green, RM
    JOURNAL OF ALGEBRA, 1997, 190 (02) : 498 - 517
  • [6] Affine Temperley-Lieb algebras
    Gnerre, S
    JOURNAL OF OPERATOR THEORY, 2000, 43 (01) : 35 - 42
  • [7] On the affine Temperley-Lieb algebras
    Fan, CK
    Green, RM
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 60 : 366 - 380
  • [8] Temperley-Lieb Quantum Channels
    Brannan, Michael
    Collins, Benoit
    Lee, Hun Hee
    Youn, Sang-Gyun
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (02) : 795 - 839
  • [9] Spin Chains as Modules over the Affine Temperley-Lieb Algebra
    Pinet, Theo
    Saint-Aubin, Yvan
    ALGEBRAS AND REPRESENTATION THEORY, 2023, 26 (06) : 2523 - 2584
  • [10] Standard Monomials for Temperley-Lieb Algebras
    Kim, SungSoon
    Lee, Dong-il
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2016, 50 (04): : 179 - 181