Numerical approximation for the phase-field transition system

被引:14
|
作者
Arnautu, V
Morosanu, C
机构
[1] Faculty of Mathematics, University of Iasi
关键词
phase-field transition system; Newton method; fractional step method;
D O I
10.1080/00207169608804538
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The 1D phase-field transition system introduced by Caginalp to describe the moving boundary in melting problems is considered. It is discretized by finite differences and three algorithms are presented to solve the resulting nonlinear algebraic system: the Newton method, an improved Newton method with reduced system and a fractional step method. Numerical results are reported and a comparison between the algorithms is made.
引用
收藏
页码:209 / 221
页数:13
相关论文
共 50 条
  • [21] A nonisothermal phase-field model for the ferromagnetic transition
    Berti, V.
    Grandi, D.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (11) : 1342 - 1349
  • [22] NUMERICAL ANALYSIS OF A CAGINALP PHASE-FIELD SYSTEM IN TYPE III HEAT CONDUCTION
    Baldonedo, Jacobo
    Fernandez, Jose R.
    Quintanilla, Ramon
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (09): : 2230 - 2240
  • [23] Dynamics of a conserved phase-field system
    Bonfoh, Ahmed
    APPLICABLE ANALYSIS, 2016, 95 (01) : 44 - 62
  • [24] A PHASE-FIELD APPROXIMATION OF THE WILLMORE FLOW WITH VOLUME AND AREA CONSTRAINTS
    Colli, Pierluigi
    Laurencot, Philippe
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (06) : 3734 - 3754
  • [25] Numerical Phase-Field Model Validation for Dissolution of Minerals
    Yang, Sha
    Ukrainczyk, Neven
    Caggiano, Antonio
    Koenders, Eddie
    APPLIED SCIENCES-BASEL, 2021, 11 (06):
  • [26] Phase-Field Modeling and Numerical Simulation for Ice Melting
    Wang, Jian
    Lee, Chaeyoung
    Lee, Hyun Geun
    Zhang, Qimeng
    Yang, Junxiang
    Yoon, Sungha
    Park, Jintae
    Kim, Junseok
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2021, 14 (02): : 540 - 558
  • [27] Benchmark Problems for the Numerical Schemes of the Phase-Field Equations
    Hwang, Youngjin
    Lee, Chaeyoung
    Kwak, Soobin
    Choi, Yongho
    Ham, Seokjun
    Kang, Seungyoon
    Yang, Junxiang
    Kim, Junseok
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2022, 2022
  • [28] Numerical solution to phase-field model of solidification: A review
    Zhang, Ang
    Guo, Zhipeng
    Jiang, Bin
    Xiong, Shoumei
    Pan, Fusheng
    COMPUTATIONAL MATERIALS SCIENCE, 2023, 228
  • [29] Phase-field numerical strategies for deviatoric driven fractures
    Alessi, R.
    Freddi, F.
    Mingazzi, L.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 359
  • [30] NUMERICAL INVESTIGATION OF THE DISCRETE SOLUTION OF PHASE-FIELD EQUATION
    Eichler, Pavel
    Malik, Michal
    Oberhuber, Tomas
    Fucik, Radek
    ALGORITMY 2020: 21ST CONFERENCE ON SCIENTIFIC COMPUTING, 2020, : 111 - 120