Numerical approximation for the phase-field transition system

被引:14
|
作者
Arnautu, V
Morosanu, C
机构
[1] Faculty of Mathematics, University of Iasi
关键词
phase-field transition system; Newton method; fractional step method;
D O I
10.1080/00207169608804538
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The 1D phase-field transition system introduced by Caginalp to describe the moving boundary in melting problems is considered. It is discretized by finite differences and three algorithms are presented to solve the resulting nonlinear algebraic system: the Newton method, an improved Newton method with reduced system and a fractional step method. Numerical results are reported and a comparison between the algorithms is made.
引用
收藏
页码:209 / 221
页数:13
相关论文
共 50 条
  • [2] Numerical simulation of the solid region via phase-field transition system
    Morosanu, Costica
    Iorga, Gheorghe
    Cocindau, Sanda Ciresica
    METALURGIA INTERNATIONAL, 2008, 13 (12): : 91 - 95
  • [3] Numerical Approximation of a Phase-Field Surfactant Model with Fluid Flow
    Zhu, Guangpu
    Kou, Jisheng
    Sun, Shuyu
    Yao, Jun
    Li, Aifen
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (01) : 223 - 247
  • [4] Numerical Approximation of a Phase-Field Surfactant Model with Fluid Flow
    Guangpu Zhu
    Jisheng Kou
    Shuyu Sun
    Jun Yao
    Aifen Li
    Journal of Scientific Computing, 2019, 80 : 223 - 247
  • [5] Phase-Field Approximation of the Willmore Flow
    Mingwen Fei
    Yuning Liu
    Archive for Rational Mechanics and Analysis, 2021, 241 : 1655 - 1706
  • [6] Phase-Field Approximation of the Willmore Flow
    Fei, Mingwen
    Liu, Yuning
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 241 (03) : 1655 - 1706
  • [7] A Phase-Field Model for Flows with Phase Transition
    Kraenkel, Mirko
    Kroener, Dietmar
    THEORY, NUMERICS AND APPLICATIONS OF HYPERBOLIC PROBLEMS II, 2018, 237 : 243 - 254
  • [8] NUMERICAL APPROXIMATION OF A NON-SMOOTH PHASE-FIELD MODEL FOR MULTICOMPONENT INCOMPRESSIBLE FLOW
    Banas, L'ubomir
    Nurnberg, Robert
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (03): : 1089 - 1117
  • [9] Numerical approximation of the square phase-field crystal dynamics on the three-dimensional objects
    Yang, Junxiang
    Kim, Junseok
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 471
  • [10] CONVERGENCE OF EXPONENTIAL ATTRACTORS FOR A TIME SPLITTING APPROXIMATION OF THE CAGINALP PHASE-FIELD SYSTEM
    Batangouna, Narcisse
    Pierre, Morgan
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (01) : 1 - 19