The Time Series Data Classification Method Based on Deep Spatial Transformer Network

被引:0
|
作者
Hu, Demeng [1 ]
Hu, Bo [2 ]
Li, Zhao [2 ]
Xv, Fangmin [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing, Peoples R China
[2] State Grid Liaoning Elect Power Supply Co Ltd, Shenyang, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Multivariate time series; Prognostics health management; Spatial transformer network; Deep learning;
D O I
10.1007/978-981-19-0390-8_82
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
In this paper, we propose a deep spatial transformer network (DSTN) to classify the time series data. This DSTN model can avoid the distortion thatmay be caused when the time series data is transformed to 2D-data, as it has an adaptive feature extractionmechanism profit and can carry out affine transformation on 2D-data. It can also avoid the influence of this distortion on the subsequent convolutional neural networks. Thus, Experimental results show that this framework can effectively classify and predict complex multivariable time series data.
引用
收藏
页码:667 / 671
页数:5
相关论文
共 50 条
  • [21] Data Augmentation for Time Series Classification with Deep Learning Models
    Pialla, Gautier
    Devanne, Maxime
    Weber, Jonathan
    Idoumghar, Lhassane
    Forestier, Germain
    ADVANCED ANALYTICS AND LEARNING ON TEMPORAL DATA, AALTD 2022, 2023, 13812 : 117 - 132
  • [22] Transformer fault classification for diagnosis based on DGA and deep belief network
    Zou, Dexu
    Li, Zixiong
    Quan, Hao
    Peng, Qingjun
    Wang, Shan
    Hong, Zhihu
    Dai, Weiju
    Zhou, Tao
    Yin, Jianhua
    ENERGY REPORTS, 2023, 9 : 250 - 256
  • [23] MCformer: A Transformer Based Deep Neural Network for Automatic Modulation Classification
    Hamidi-Rad, Shahab
    Jain, Swayambhoo
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [24] A convolutional and transformer based deep neural network for automatic modulation classification
    Ying, Shanchuan
    Huang, Sai
    Chang, Shuo
    Yang, Zheng
    Feng, Zhiyong
    Guo, Ningyan
    CHINA COMMUNICATIONS, 2023, 20 (05) : 135 - 147
  • [25] A Convolutional and Transformer Based Deep Neural Network for Automatic Modulation Classification
    Shanchuan Ying
    Sai Huang
    Shuo Chang
    Zheng Yang
    Zhiyong Feng
    Ningyan Guo
    China Communications, 2023, 20 (05) : 135 - 147
  • [26] A transformer-based deep neural network model for SSVEP classification
    Chen, Jianbo
    Zhang, Yangsong
    Pan, Yudong
    Xu, Peng
    Guan, Cuntai
    NEURAL NETWORKS, 2023, 164 : 521 - 534
  • [27] Hyperspectral image classification method based on hierarchical transformer network
    Zhang Y.
    Zheng X.
    Lu X.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (07): : 1139 - 1147
  • [28] Urban informal settlements classification via a transformer-based spatial-temporal fusion network using multimodal remote sensing and time-series human activity data
    Fan, Runyu
    Li, Jun
    Song, Weijing
    Han, Wei
    Yan, Jining
    Wang, Lizhe
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 111
  • [29] TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate Time Series Data
    Tuli, Shreshth
    Casale, Giuliano
    Jennings, Nicholas R.
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (06): : 1201 - 1214
  • [30] Transformer-based deep learning architecture for time series forecasting
    Nayak, G. H. Harish
    Alam, Md Wasi
    Avinash, G.
    Kumar, Rajeev Ranjan
    Ray, Mrinmoy
    Barman, Samir
    Singh, K. N.
    Naik, B. Samuel
    Alam, Nurnabi Meherul
    Pal, Prasenjit
    Rathod, Santosha
    Bisen, Jaiprakash
    SOFTWARE IMPACTS, 2024, 22