Modeling photon propagation in biological tissues using a generalized Delta-Eddington phase function

被引:32
|
作者
Cong, W.
Shen, H.
Cong, A.
Wang, Y.
Wang, G.
机构
[1] Virginia Polytech Inst & State Univ, Sch Biomed Engn & Sci, Biomed Imaging Div, Blacksburg, VA 24061 USA
[2] Virginia Polytech Inst & State Univ, Dept Elect & Comp Engn, Computat Bioinformat & Bioimaging Lab, Arlington, VA 22203 USA
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 05期
关键词
D O I
10.1103/PhysRevE.76.051913
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Photon propagation in biological tissue is commonly described by the radiative transfer equation, while the phase function in the equation represents the scattering characteristics of the medium and has significant influence on the precision of solution and the efficiency of computation. In this work, we present a generalized Delta-Eddington phase function to simplify the radiative transfer equation to an integral equation with respect to photon fluence rate. Comparing to the popular diffusion approximation model, the solution of the integral equation is highly accurate to model photon propagation in the biological tissue over a broad range of optical parameters. This methodology is validated by Monte Carlo simulation.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Listen to photon propagation in biological tissues: Quantitative optical scattering imaging and high-resolution diffuse optical tomography using photoacoustic measurements
    Yuan, Zhen
    PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2014, 2014, 8943
  • [22] Modeling FDTD wave propagation in dispersive biological tissue using a single pole Z-transform function
    Rappaport, C
    Bishop, E
    Kosmas, P
    PROCEEDINGS OF THE 25TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-4: A NEW BEGINNING FOR HUMAN HEALTH, 2003, 25 : 3779 - 3782
  • [23] MODELING OF WOUND BALLISTICS IN BIOLOGICAL TISSUES USING ENGINEERING SIMULATION SOFTWARE
    Tsymbaliuk, V.
    Lurin, I.
    Gumeniuk, K.
    Herasymenko, O.
    Furkalo, S.
    Oklei, D.
    Negoduyko, V.
    Gorobeiko, M.
    Dinets, A.
    MEDICNI PERSPEKTIVI, 2023, 28 (01): : 37 - 48
  • [24] Computational Modeling of Electroporation of Biological Tissues Using the Finite Element Method
    Knabben, M. A.
    Weinert, R. L.
    Ramos, A.
    XXVII BRAZILIAN CONGRESS ON BIOMEDICAL ENGINEERING, CBEB 2020, 2022, : 85 - 90
  • [25] Modeling the collagen fibril network of biological tissues as a nonlinearly elastic material using a continuous volume fraction distribution function
    Shirazi, Reza
    Vena, Pasquale
    Sah, Robert L.
    Klisch, Stephen M.
    MATHEMATICS AND MECHANICS OF SOLIDS, 2011, 16 (07) : 706 - 715
  • [26] Complex Permittivity Measurement of Biological Tissues Using the Rational Function Model
    Dilman, Ismail
    Aydinalp, Cemanur
    Joof, Sulayman
    Akinci, Mehmet Nuri
    Yilmaz, Tuba
    2022 IEEE USNC-URSI RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM), 2022, : 7 - 8
  • [27] Biological reaction modeling using radial basis function networks
    Vande Wouwer, A
    Renotte, C
    Bogaerts, P
    COMPUTERS & CHEMICAL ENGINEERING, 2004, 28 (11) : 2157 - 2164
  • [28] Two-term scattering phase function for photon transport to model subdiffuse reflectance in superficial tissues
    Jacques, Steven L.
    Mccormick, Norman J.
    BIOMEDICAL OPTICS EXPRESS, 2023, 14 (02) : 751 - 770
  • [29] Measurement of the anisotropy of biological tissues using a three-phase electromagnetic sensor
    Innovative Research Initiatives, Tokyo Institute of Technology, Japan
    不详
    不详
    不详
    Trans. Jpn. Soc. Med. Biol. Eng., 2013, 3 (224-231):
  • [30] Using constraint propagation and domain reduction for the generation phase in declarative modeling
    Le Roux, O
    Gaildrat, V
    Caubet, R
    FIFTH INTERNATIONAL CONFERENCE ON INFORMATION VISUALISATION, PROCEEDINGS, 2001, : 117 - 123