CHROMSTRUCT 4: A Python']Python Code to Estimate the Chromatin Structure from Hi-C Data

被引:9
|
作者
Caudai, Claudia [1 ]
Salerno, Emanuele [1 ]
Zoppe, Monica [2 ]
Merelli, Ivan [3 ]
Tonazzini, Anna [1 ]
机构
[1] Natl Res Council Italy, Inst Informat Sci & Technol, I-56127 Pisa, Italy
[2] Natl Res Council Italy, Inst Clin Physiol, I-56124 Pisa, Italy
[3] Natl Res Council Italy, Inst Biomed Technol, I-20090 Milan, Italy
关键词
Chromosome conformation capture; chromatin configuration; Bayesian estimation; DATA REVEALS; GENOME; ORGANIZATION; PRINCIPLES;
D O I
10.1109/TCBB.2018.2838669
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A method and a stand-alone Python code to estimate the 3D chromatin structure from chromosome conformation capture data are presented. The method is based on a multiresolution, modified-bead-chain chromatin model, evolved through quaternion operators in a Monte Carlo sampling. The solution space to be sampled is generated by a score function with a data-fit part and a constraint part where the available prior knowledge is implicitly coded. The final solution is a set of 3D configurations that are compatible with both the data and the prior knowledge. The iterative code, provided here as additional material, is equipped with a graphical user interface and stores its results in standard-format files for 3D visualization. We describe the mathematical-computational aspects of the method and explain the details of the code. Some experimental results are reported, with a demonstration of their fit to the data.
引用
收藏
页码:1867 / 1878
页数:12
相关论文
共 50 条
  • [41] HiC-ACT: improved detection of chromatin interactions from Hi-C data via aggregated Cauchy test
    Lagler, Taylor M.
    Abnousi, Armen
    Hu, Ming
    Yang, Yuchen
    Li, Yun
    AMERICAN JOURNAL OF HUMAN GENETICS, 2021, 108 (02) : 257 - 268
  • [42] Inferring Radial Organization of Chromosomal Territories from HI-C Data
    Das, Priyojit
    Sanders, Jacob T.
    Shen, Tongye
    McCord, Rachel P.
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 549A - 549A
  • [43] Graph-Based Genome Inference from Hi-C Data
    Shen, Yihang
    Yu, Lingge
    Qiu, Yutong
    Zhang, Tianyu
    Kingsford, Carl
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, RECOMB 2024, 2024, 14758 : 115 - 130
  • [44] Translocation detection from Hi-C data via scan statistics
    Cheng, Anthony
    Mao, Disheng
    Zhang, Yuping
    Glaz, Joseph
    Ouyang, Zhengqing
    BIOMETRICS, 2023, 79 (02) : 1306 - 1317
  • [45] FIREcaller: Detecting frequently interacting regions from Hi-C data
    Crowley, Cheynna
    Yang, Yuchen
    Qiu, Yunjiang
    Hu, Benxia
    Abnousi, Armen
    Lipinski, Jakub
    Plewczynski, Dariusz
    Wu, Di
    Won, Hyejung
    Ren, Bing
    Hu, Ming
    Li, Yun
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 355 - 362
  • [46] Unsupervised Learning from Noisy Networks with Applications to Hi-C Data
    Wang, Bo
    Zhu, Junjie
    Ursu, Oana
    Pourshafeie, Armin
    Batzoglou, Serafim
    Kundaje, Anshul
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [47] TADfit is a multivariate linear regression model for profiling hierarchical chromatin domains on replicate Hi-C data
    Liu, Erhu
    Lyu, Hongqiang
    Peng, Qinke
    Liu, Yuan
    Wang, Tian
    Han, Jiuqiang
    COMMUNICATIONS BIOLOGY, 2022, 5 (01)
  • [48] TADfit is a multivariate linear regression model for profiling hierarchical chromatin domains on replicate Hi-C data
    Erhu Liu
    Hongqiang Lyu
    Qinke Peng
    Yuan Liu
    Tian Wang
    Jiuqiang Han
    Communications Biology, 5
  • [49] Modeling DNA Structure with Different Chromatin Compaction in TOPAS-NBio Using Hi-C Representations
    Yoo, D.
    Henthron, N.
    Ingram, S.
    Merchant, M.
    Kirkby, K.
    Warmenhoven, J.
    McNamara, A.
    Held, K.
    Paganetti, H.
    Schuemann, J.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [50] Inferring time series chromatin states for promoter-enhancer pairs based on Hi-C data
    Miko, Henriette
    Qiu, Yunjiang
    Gaertner, Bjoern
    Sander, Maike
    Ohler, Uwe
    BMC GENOMICS, 2021, 22 (01)