RECONSTRUCTION OF AIRBORNE LASER SCANNER TRAJECTORY FROM DATA

被引:0
|
作者
de Boissieu, Florian [1 ]
Lang, Marc [1 ]
Feret, Jean-Baptiste [1 ]
Monnet, Jean-Matthieu [2 ]
Durrieu, Sylvie [1 ]
机构
[1] Univ Montpellier, Irstea, UMR TETIS, Montpellier, France
[2] Univ Grenoble, Irstea, LESSEM, Grenoble, France
关键词
Airborne Laser Scanner; Lidar; Forest; Trajectory Inversion;
D O I
10.1109/igarss.2019.8900350
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Multi-echo airborne laser scanner (ALS) has shown increasing utility for forestry applications in the two past decades. Among the numerous algorithms developed to process ALS data on forest environments some require to know actual sensor trajectory and deduced angles of incidence. However, sensor trajectory is not part of the ALS standard LAS file format and is often not delivered with point clouds. Scan angle is usually specified with a one byte precision or not given at all. This paper presents a method for the reconstruction of the sensor trajectory from a multi-echo ALS point cloud. It is based on the intersection of multi-echo pulses and was tested on three data sets acquired over a deciduous, a tropical and a mountainous forest, respectively. It allows sensor location estimate and scan angle estimate with less than 25 cm and 2.10-2 degrees error.
引用
收藏
页码:8964 / 8967
页数:4
相关论文
共 50 条
  • [21] Estimating forest growth using canopy metrics derived from airborne laser scanner data
    Næsset, E
    Gobakken, T
    REMOTE SENSING OF ENVIRONMENT, 2005, 96 (3-4) : 453 - 465
  • [22] DETECTION OF COLLAPSED BUILDINGS BY CLASSIFYING SEGMENTED AIRBORNE LASER SCANNER DATA
    Elberink, Sander Oude
    Shoko, Moreblessings
    Fathi, Seyed Abdolmajid
    Rutzinger, Martin
    ISPRS WORKSHOP LASER SCANNING 2011, 2011, 38-5 (W12): : 307 - 312
  • [23] On analysis and visualization of full-waveform airborne laser scanner data
    Söderman, U
    Persson, Å
    Töpel, J
    Ahlberg, S
    Laser Radar Technology and Applications X, 2005, 5791 : 184 - 192
  • [24] Moving Voxel Method for Estimating Canopy Base Height from Airborne Laser Scanner Data
    Maguya, Almasi S.
    Tegel, Katri
    Junttila, Virpi
    Kauranne, Tuomo
    Korhonen, Markus
    Burns, Janice
    Leppanen, Vesa
    Sanz, Blanca
    REMOTE SENSING, 2015, 7 (07) : 8950 - 8972
  • [25] MODULATION TECHNIQUES FOR AN AIRBORNE LASER SCANNER
    ROBINSON, SR
    CHAPURAN, RC
    APPLIED OPTICS, 1979, 18 (18): : 3176 - 3183
  • [26] Algorithms of Laser Scanner Data Processing for Ground Surface Reconstruction
    Badenko, Vladimir
    Fedotov, Alexander
    Vinogradov, Konstantin
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS (ICCSA 2018), PT II, 2018, 10961 : 397 - 411
  • [27] Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators
    Magnussen, S
    Boudewyn, P
    CANADIAN JOURNAL OF FOREST RESEARCH, 1998, 28 (07) : 1016 - 1031
  • [28] Classifying species of individual trees by intensity and structure features derived from airborne laser scanner data
    Orka, Hans Ole
    Naesset, Erik
    Bollandsas, Ole Martin
    REMOTE SENSING OF ENVIRONMENT, 2009, 113 (06) : 1163 - 1174
  • [29] Filtering airborne laser scanner data: A wavellet-based clustering method
    Vu, TT
    Tokunaga, M
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2004, 70 (11): : 1267 - 1274
  • [30] Unmasking forest borderlines by an automatic delineation based on airborne laser scanner data
    Alivernini, A.
    Barbati, A.
    Fares, S.
    Corona, P.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016, 37 (16) : 3568 - 3583