SOME NEW CLASSES OF COMPLEX SYMMETRIC OPERATORS

被引:151
|
作者
Garcia, Stephan Ramon [1 ]
Wogen, Warren R. [2 ]
机构
[1] Pomona Coll, Dept Math, Claremont, CA 91711 USA
[2] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
Complex symmetric operator; normal operator; binormal operator; nilpotent operator; idempotent; partial isometry;
D O I
10.1090/S0002-9947-2010-05068-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We say that an operator T is an element of B(H) is complex symmetric if there exists a conjugate-linear, isometric involution C : H -> H so that T = CT*C. We prove that binomial operators, operators that are algebraic of degree two (including all idempotents), and large classes of rank-one perturbations of normal operators are complex symmetric. From an abstract viewpoint, these results explain why the compressed shift and Volterra integration operator are complex symmetric. Finally, we attempt to describe all complex symmetric partial isometries, obtaining the sharpest possible statement given only the data (dim ker T, dim ker T*).
引用
收藏
页码:6065 / 6077
页数:13
相关论文
共 50 条
  • [21] On complex symmetric Toeplitz operators
    Ko, Eungil
    Lee, Ji Eun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (01) : 20 - 34
  • [22] Remarks on Complex Symmetric Operators
    Sungeun Jung
    Eungil Ko
    Ji Eun Lee
    Mediterranean Journal of Mathematics, 2016, 13 : 719 - 728
  • [23] Complex Symmetric Toeplitz Operators
    Bu, Qinggang
    Chen, Yong
    Zhu, Sen
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2021, 93 (02)
  • [24] PROPERTIES OF COMPLEX SYMMETRIC OPERATORS
    Jung, Sungeun
    Ko, Eungil
    Lee, Ji Eun
    OPERATORS AND MATRICES, 2014, 8 (04): : 957 - 974
  • [25] Approximation of complex symmetric operators
    Sen Zhu
    Mathematische Annalen, 2016, 364 : 373 - 399
  • [26] Complex Symmetric Toeplitz Operators
    Qinggang Bu
    Yong Chen
    Sen Zhu
    Integral Equations and Operator Theory, 2021, 93
  • [27] Remarks on Complex Symmetric Operators
    Jung, Sungeun
    Ko, Eungil
    Lee, Ji Eun
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (02) : 719 - 728
  • [28] Complex symmetric operators and interpolation
    Mleczko, Pawel
    Szwedek, Radoslaw
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (01) : 210 - 215
  • [29] Crystal complex symmetric operators
    Eungil Ko
    Ji Eun Lee
    Mee-Jung Lee
    Banach Journal of Mathematical Analysis, 2020, 14 : 1711 - 1727
  • [30] Commutants of some classes of operators associated with shift operators
    Linchuk Yu.S.
    Ukrainian Mathematical Journal, 2007, 59 (6) : 945 - 953