Twisting of quantum groups and integrable models

被引:0
|
作者
Kulish, PP [1 ]
机构
[1] VA Steklov Math Inst, St Petersburg Dept, St Petersburg 191011, Russia
来源
关键词
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Few new twisting elements for extended jordanian quantization of sl(N), for the Drinfeld-Jimbo quantum algebra U-q (sl(3)), and for the Lie superalgebra osp(1/2) are given. Applications of these twisting elements to the spin chain models integrable by the quantum inverse scattering method are discussed.
引用
收藏
页码:75 / 85
页数:11
相关论文
共 50 条
  • [21] Integrable potentials on spaces with curvature from quantum groups
    Ballesteros, A
    Herranz, FJ
    Ragnisco, O
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (32): : 7129 - 7144
  • [22] Vertex operators for quantum groups and application to integrable systems
    Ragoucy, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (37): : 7929 - 7942
  • [23] LOCAL HAMILTONIANS FOR INTEGRABLE QUANTUM MODELS ON A LATTICE
    TARASOV, VO
    TAKHTADZHYAN, LA
    FADDEEV, LD
    THEORETICAL AND MATHEMATICAL PHYSICS, 1983, 57 (02) : 1059 - 1073
  • [24] Deformations of Quantum Field Theories and Integrable Models
    Gandalf Lechner
    Communications in Mathematical Physics, 2012, 312 : 265 - 302
  • [25] MATRIX PRODUCT STATES IN QUANTUM INTEGRABLE MODELS
    Katsura, Hosho
    Maruyama, Isao
    FRONTIERS IN QUANTUM INFORMATION RESEARCH: DECOHERENCE, ENTANGLEMENT, ENTROPY, MPS AND DMRG, 2012, 4 : 302 - 321
  • [26] Algebraic approach in unifying quantum integrable models
    Kundu, A
    PHYSICAL REVIEW LETTERS, 1999, 82 (20) : 3936 - 3939
  • [27] QUANTUM GROUPS (YBZF ALGEBRAS) AND INTEGRABLE THEORIES - AN OVERVIEW
    DEVEGA, HJ
    DIFFERENTIAL GEOMETRICAL METHODS IN THEORETICAL PHYSICS, 1988, 250 : 187 - 210
  • [28] Deformations of Quantum Field Theories and Integrable Models
    Lechner, Gandalf
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 312 (01) : 265 - 302
  • [29] Hierarchy of quantum explicitly solvable and integrable models
    Pogrebkov, A. K.
    Bilinear Integrable Systems: From Classical to Quatum, Continuous to Discrete, 2006, 201 : 231 - 244
  • [30] Integrable systems on a sphere as models for quantum dots
    Salerno, M
    De Filippo, S
    Tufino, E
    Enolskii, VZ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (11): : 2311 - 2317