An overview of activity-based probes for glycosidases

被引:83
|
作者
Wu, Liang [1 ]
Armstrong, Zachary [1 ]
Schroeder, Sybrin P. [2 ]
de Boer, Casper [2 ]
Artola, Marta [2 ]
Aerts, Johannes M. F. G. [2 ]
Overkleeft, Herman S. [2 ]
Davies, Gideon J. [1 ]
机构
[1] Univ York, Dept Chem, York Struct Biol Lab, York YO10 5DD, N Yorkshire, England
[2] Leiden Univ, Leiden Inst Chem, Einsteinweg 55, NL-2300 RA Leiden, Netherlands
基金
欧洲研究理事会; 英国生物技术与生命科学研究理事会;
关键词
MECHANISM-BASED INACTIVATION; PROTEIN-PROFILING PROBES; IN-SITU VISUALIZATION; COVALENT INHIBITORS; FUNCTIONAL INTERROGATION; L-FUCOSIDASES; ENZYME; CYCLOPHELLITOL; IDENTIFICATION; GLUCOSIDASE;
D O I
10.1016/j.cbpa.2019.05.030
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
As the scope of modern genomics technologies increases, so does the need for informative chemical tools to study functional biology. Activity-based probes (ABPs) provide a powerful suite of reagents to probe the biochemistry of living organisms. These probes, featuring a specificity motif, a reactive chemical group and a reporter tag, are opening-up large swathes of protein chemistry to investigation in vitro, as well as in cellular extracts, cells and living organisms in vivo. Glycoside hydrolases, by virtue of their prominent biological and applied roles, provide a broad canvas on which ABPs may illustrate their functions. Here we provide an overview of glycosidase ABP mechanisms, and review recent ABP work in the glycoside hydrolase field, encompassing their use in medical diagnosis, their application for generating chemical genetic disease models, their fine-tuning through conformational and reactivity insight, their use for high-throughput inhibitor discovery, and their deployment for enzyme discovery and dynamic characterization.
引用
收藏
页码:25 / 36
页数:12
相关论文
共 50 条
  • [31] Editorial: Development and Applications of New Activity-Based Probes
    Blum, Galia
    Verhelst, Steven H. L.
    Ma, Xiaowei
    FRONTIERS IN CHEMISTRY, 2021, 9
  • [32] β-Lactams and β-lactones as activity-based probes in chemical biology
    Boettcher, Thomas
    Sieber, Stephan A.
    MEDCHEMCOMM, 2012, 3 (04) : 408 - 417
  • [33] Activity-Based Probes for 15-Lipoxygenase-1
    Eleftheriadis, Nikolaos
    Thee, Stephanie A.
    Zwinderman, Martijn R. H.
    Leus, Niek G. J.
    Dekker, Frank J.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (40) : 12300 - 12305
  • [34] Activity-based probes as molecular tools for biomarker discovery
    Carvalho, L. A. R.
    Ruivo, E. F. P.
    Lucas, S. D.
    Moreira, R.
    MEDCHEMCOMM, 2015, 6 (04) : 536 - 546
  • [35] Peptidyl Activity-Based Probes for Imaging Serine Proteases
    Kasperkiewicz, Paulina
    FRONTIERS IN CHEMISTRY, 2021, 9
  • [36] Activity-based fluorescence probes for pathophysiological peroxynitrite fluxes
    Mao, Zhiqiang
    Xiong, Jianhua
    Wang, Pengzhan
    An, Jusung
    Zhang, Fan
    Liu, Zhihong
    Kim, Jong Seung
    COORDINATION CHEMISTRY REVIEWS, 2022, 454
  • [37] Activity-based probes for functional interrogation of retaining β-glucuronidases
    Liang Wu
    Jianbing Jiang
    Yi Jin
    Wouter W Kallemeijn
    Chi-Lin Kuo
    Marta Artola
    Wei Dai
    Cas van Elk
    Marco van Eijk
    Gijsbert A van der Marel
    Jeroen D C Codée
    Bogdan I Florea
    Johannes M F G Aerts
    Herman S Overkleeft
    Gideon J Davies
    Nature Chemical Biology, 2017, 13 : 867 - 873
  • [38] Development of activity-based fluorescent probes targeting the immunoproteasome
    Sharma, Lalit Kumar
    Lee, Na-Ra
    Carmony, Kimberly Cornish
    Marks, James
    Kim, Kyung Bo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [39] Development of Activity-Based Proteomic Probes for Protein Citrullination
    Nemmara, Venkatesh V.
    Thompson, Paul R.
    ACTIVITY-BASED PROTEIN PROFILING, 2019, 420 : 233 - 251
  • [40] Dynamic imaging of protease activity with fluorescently quenched activity-based probes
    Blum, G
    Mullins, SR
    Keren, K
    Fonovic, M
    Jedeszko, C
    Rice, MJ
    Sloane, BF
    Bogyo, M
    NATURE CHEMICAL BIOLOGY, 2005, 1 (04) : 203 - 209