Low-Dispersion Multimode Fibers with a Core Made of Fluorine-Doped Quartz Glass

被引:0
|
作者
Dukel'skii, K. V. [1 ,5 ]
Ermolaeva, G. M. [2 ]
Eron'yan, M. A. [3 ]
Komarov, A. V. [4 ]
Reutskii, A. A. [3 ]
Shilov, V. B. [2 ]
Shcheglov, A. A. [3 ]
机构
[1] Bonch Bruevich St Petersburg State Univ Telecommu, St Petersburg 193232, Russia
[2] Vavilov State Opt Inst, St Petersburg 199034, Russia
[3] Concern Cent Res Inst Elektropribor, St Petersburg 197046, Russia
[4] Vavilov State Opt Inst, NGO Sci Res & Technol Inst Opt Mat Sci, St Petersburg 192171, Russia
[5] ITMO Univ, St Petersburg 197101, Russia
关键词
RADIATION-INDUCED ABSORPTION; OPTICAL-FIBERS; SILICA; DIFFUSION;
D O I
10.1134/S0030400X18080040
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The causes of the occurrence and the method of the elimination of defects of non-bridging oxygen in multimode fluorosilicate optical fibers prepared by the modified method of chemical vapor deposition are considered. The solution is the use of support tubes obtained by quartz surfacing in a hydrogen atmosphere. In this case, there is no absorption band in a range of 630 nm caused by nonbridging oxygen in the spectrum of optical losses of gradient fluorosilicate optical fibers of W-type. Attenuation in a visible spectrum range is mainly determined by the level of Rayleigh scattering and the mode dispersions at a wavelength of 342 and 683 nm are 1.2 +/- 0.1 and 0.7 +/- 0.2 ps/m, respectively.
引用
收藏
页码:281 / 284
页数:4
相关论文
共 50 条
  • [31] Thermoluminescence response of multimode fluorine-doped SiO2 optical fibers and TLD 100 with 6 mega volt photon irradiation
    M. A. Saeed
    I. Hossain
    R. Nursyazwanie
    H. Wagiran
    A. A. Mubarak
    High Energy Chemistry, 2015, 49 : 146 - 149
  • [32] Terahertz absorption and dispersion of fluorine-doped single-walled carbon nanotube
    Jeon, TI
    Son, JH
    An, KH
    Lee, YH
    Lee, YS
    JOURNAL OF APPLIED PHYSICS, 2005, 98 (03)
  • [33] High-temperature effects in fluorine-doped, fused synthetic silica fibers
    Tampere Univ of Technology, Tampere, Finland
    J Eng Appl Sci, 21 (5058-5063):
  • [34] Growth dynamics of chemical composition gratings in fluorine-doped silica optical fibers
    Fokine, M
    OPTICS LETTERS, 2002, 27 (22) : 1974 - 1976
  • [35] Effective Raman gain characteristics in germanium- and fluorine-doped optical fibers
    Fukai, C
    Nakajima, K
    Zhou, J
    Tajima, K
    Kurokawa, K
    Sankawa, I
    OPTICS LETTERS, 2004, 29 (06) : 545 - 547
  • [36] High-temperature effects in fluorine-doped, fused synthetic silica fibers
    Oikari, R
    Laurila, T
    Hernberg, R
    APPLIED OPTICS, 1997, 36 (21): : 5058 - 5063
  • [37] X-ray irradiation effects on fluorine-doped germanosilicate optical fibers
    Di Francesca, D.
    Boukenter, A.
    Agnello, S.
    Girard, S.
    Alessi, A.
    Paillet, P.
    Marcandella, C.
    Richard, N.
    Gelardi, F. M.
    Ouerdane, Y.
    OPTICAL MATERIALS EXPRESS, 2014, 4 (08): : 1683 - 1695
  • [38] RAMAN-SCATTERING SPECTRUM ANALYSES FOR FLUORINE-DOPED SILICA OPTICAL FIBERS
    NOGUCHI, K
    MURAKAMI, Y
    UESUGI, N
    ISHIHARA, K
    APPLIED PHYSICS LETTERS, 1984, 44 (05) : 491 - 493
  • [39] Comparative studies on large-core-energy fibres with silica core and fluorine-doped cladding
    Alarabi, Alhadi
    Wang, Jinzhong
    Ma, Hong-Hu
    Taban, James
    Abdellah, Amany
    Yu, Qingjiang
    Gao, Shiyong
    Jiao, Shujie
    Zhang, Yong
    Wang, Dongbo
    Zhao, Xia
    Liu, Lihua
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2017, 11 (9-10): : 508 - 512
  • [40] Blue-Enhanced Supercontinuum Generation in a Graded-Index Fluorine-Doped Multimode Fiber
    Eznaveh, Z. Sanjabi
    Eftekhar, M. A.
    Lopez, J. E. Antonio
    Kolesik, M.
    Aviles, H. Lopez
    Wise, F. W.
    Christodoulides, D. N.
    Correa, R. Amezcua
    2018 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC), 2018,