Experimental data-driven uncertainty quantification for the dynamic fracture toughness of particulate polymer composites

被引:11
|
作者
Sharma, A. [1 ]
Mukhopadhyay, T. [2 ]
Kushvaha, V. [1 ]
机构
[1] Indian Inst Technol Jammu, Dept Civil Engn, Jammu, J&K, India
[2] Indian Inst Technol Kanpur, Dept Aerosp Engn, Kanpur, India
关键词
Stochastic dynamic fracture toughness; Uncertainty quantification in dynamic fracture; Sensitivity analysis of particulate composites; ANN assisted stochastic experimental; characterization of composites; NATURAL FREQUENCY-ANALYSIS; FREE-VIBRATION ANALYSIS; PARTICLE-SIZE; LOADING-RATE; PROPAGATION; PREDICTION; FILLER; BEHAVIOR; PLATES; NOISE;
D O I
10.1016/j.engfracmech.2022.108724
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper presents an experimental investigation supported by data-driven approaches con-cerning the influence of critical stochastic effects on the dynamic fracture toughness of glass-filled epoxy composites using a computationally efficient framework of uncertainty quantification. Three different shapes of glass particles are considered including rod, spherical and flaky shapes with coupled stochastic variations in aspect ratio, dynamic elastic modulus and volume fraction. An artificial neural network based surrogate assisted Monte Carlo simulation is carried out here in conjunction with advanced experimental techniques like digital image correlation and scanning electron microscopy to quantify the uncertainty and sensitivity associated with the dynamic fracture toughness of composites in terms of stress intensity factor under dynamic impact. The study reveals that the pre-crack initiation time regime shows the most prominent effect of un-certainty. Additionally, rod shape and the aspect ratio are the most sensitive filler type and input parameter respectively for characterizing dynamic fracture toughness. Here the quantitative re-sults based on large-scale data-driven approaches convincingly demonstrate using a computa-tional mapping between the stochastic input and output parameter spaces that the effect of uncertainty gets pronounced significantly while propagating from the compound source level to the impact responses. Such outcomes based on experimental data essentially bring us to the realization that quantification of uncertainty is of utmost importance for developing a reliable and practically relevant inclusive analysis and design framework for the dynamic fracture of particulate composites. With limited literature available on the determination of fracture toughness considering inertial effects, the present work demonstrates a novel and insightful experimental approach for uncertainty quantification and sensitivity analysis of dynamic fracture toughness of particulate polymer composites based on surrogate modeling.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Data-driven structural identification of nonlinear assemblies: Uncertainty Quantification
    Safari, Sina
    Montalvao, Diogo
    Monsalve, Julian M. Londono
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2025, 170
  • [22] Data-Driven Uncertainty Quantification for Multi-Sensor Analytics
    Stracuzzi, David J.
    Darling, Michael C.
    Chen, Maximillian G.
    Peterson, Matthew G.
    GROUND/AIR MULTISENSOR INTEROPERABILITY, INTEGRATION, AND NETWORKING FOR PERSISTENT ISR IX, 2018, 10635
  • [23] Data-driven uncertainty quantification in macroscopic traffic flow models
    Wuerth, Alexandra
    Binois, Mickael
    Goatin, Paola
    Goettlich, Simone
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2022, 48 (06)
  • [24] Using Data-Driven Uncertainty Quantification to Support Decision Making
    Vollmer, Charlie
    Peterson, Matt
    Stracuzzi, David J.
    Chen, Maximillian G.
    STATISTICAL DATA SCIENCE, 2018, : 141 - 153
  • [25] A multi-analysis framework for uncertainty quantification and data-driven simulation of design allowables in laminated composites
    Reiner, Johannes
    COMPOSITES SCIENCE AND TECHNOLOGY, 2025, 261
  • [26] Fracture behavior and fracture toughness of particulate filled epoxy composites
    Hussain, M
    Nakahira, A
    Nishijima, S
    Niihara, K
    MATERIALS LETTERS, 1996, 27 (1-2) : 21 - 25
  • [27] The debonding toughness in layered particulate polymer composites
    Hbaieb, Kais
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2016, 107 (02) : 139 - 147
  • [28] Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion
    Oladyshkin, S.
    Nowak, W.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2012, 106 : 179 - 190
  • [29] An Optimal Dual Data-Driven Framework for RUL Prediction With Uncertainty Quantification
    Yang, Lei
    Liao, Yuhe
    IEEE SENSORS JOURNAL, 2025, 25 (03) : 4943 - 4957
  • [30] Data-driven Uncertainty Quantification for Systematic Coarse-grained Models
    Jin, Tangxin
    Chazirakis, Anthony
    Kalligiannaki, Evangelia
    Harmandaris, Vagelis
    Katsoulakis, Markos A.
    arXiv, 2020,