Continuous wavelet transform on the hyperboloid

被引:17
|
作者
Bogdanova, Iva [1 ]
Vandergheynst, Pierre
Gazeau, Jean-Pierre
机构
[1] Ecole Polytech Fed Lausanne, Signal Proc Inst, CH-1015 Lausanne, Switzerland
[2] Univ Paris 07, Lab Astroparticle & Cosmol, F-75251 Paris, France
关键词
non-commutative harmonic analysis; wavelets; Fourier-Helgason transform;
D O I
10.1016/j.acha.2007.01.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we build a continuous wavelet transform (CWT) on the upper sheet of the 2-hyperboloid H-+(2). First, we define a class of suitable dilations on the hyperboloid through conic projection. Then, incorporating hyperbolic motions belonging to SO0(1, 2), we define a family of axisymmetric hyperbolic wavelets. The continuous wavelet transform W-f(a, x) is obtained by convolution of the scaled axisymmetric wavelets with the signal. The wavelet transform is proved to be invertible whenever wavelets satisfy a particular admissibility condition, which turns out to be a zero-mean condition. We then provide some basic examples and discuss the limit at null curvature. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:285 / 306
页数:22
相关论文
共 50 条
  • [21] Wavelet transform and continuous baroreflex determination
    Krticka, A
    Honzikova, N
    MEDICON 2001: PROCEEDINGS OF THE INTERNATIONAL FEDERATION FOR MEDICAL & BIOLOGICAL ENGINEERING, PTS 1 AND 2, 2001, : 356 - 359
  • [22] CONTINUOUS BESSEL WAVELET TRANSFORM OF DISTRIBUTIONS
    Upadhyay, Santosh Kumar
    Maurya, Jay Singh
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (04) : 1463 - 1488
  • [23] Thrombolysis in the eyes of the continuous wavelet transform
    Toledo, E
    Gurevitz, O
    Hod, H
    Eldar, M
    Akselrod, S
    COMPUTERS IN CARDIOLOGY 2002, VOL 29, 2002, 29 : 657 - 660
  • [24] CONTINUOUS WAVELET TRANSFORM OF SCHWARTZ DISTRIBUTIONS
    Pandey, J. N.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (06) : 2005 - 2028
  • [25] THE CONTINUOUS WAVELET TRANSFORM ON ULTRADISTRIBUTION SPACES
    Singh, Abhishek
    Mala, Anshu
    COLLOQUIUM MATHEMATICUM, 2019, 157 (02) : 189 - 201
  • [26] The Continuous Wavelet Transform and Symmetric Spaces
    R. Fabec
    G. Ólafsson
    Acta Applicandae Mathematica, 2003, 77 : 41 - 69
  • [27] Inversion formulas for the continuous wavelet transform
    Weisz, F.
    ACTA MATHEMATICA HUNGARICA, 2013, 138 (03) : 237 - 258
  • [28] The continuous wavelet transform and symmetric spaces
    Fabec, R
    Olafsson, G
    ACTA APPLICANDAE MATHEMATICAE, 2003, 77 (01) : 41 - 69
  • [29] APPROXIMATION PROPERTIES OF THE CONTINUOUS WAVELET TRANSFORM
    RIEDER, A
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1990, 70 (06): : T577 - T578
  • [30] Continuous Wavelet Transform on Local Fields
    Pathak, Ashish
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2016, 34 (02): : 113 - +