Effects of a Macromolecule Spirocyclic Inflatable Flame Retardant on the Thermal and Flame Retardant Properties of Epoxy Resin

被引:26
|
作者
Song, Kunpeng [1 ]
Wang, Yinjie [1 ]
Ruan, Fang [1 ]
Liu, Jiping [1 ]
Li, Nianhua [1 ]
Li, Xueli [1 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, 5 Zhongguancun South St, Beijing 100081, Peoples R China
关键词
spirocyclic; intumescent flame retardant; epoxy resin; flame retardant mechanism; PHOSPHORUS-NITROGEN; CARBON NANOTUBES; DEGRADATION; HYBRID;
D O I
10.3390/polym12010132
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A new strategy for the preparation of an integrated three-source intumescent flame retardant (IFR) has been developed to improve the flame-retardant and smoke suppression performance of epoxy resin (EP) with a synergistic flame retardant effect. Herein, the synthesis of a macromolecular spirocyclic phosphorus/nitrogen-containing IFR poly sulfonamide spirocyclic pentaerythritol bisphosphonate (SAPC) is reported via a two-step method that uses pentaerythritol, phosphorus oxychloride and sulfonamide (SAA) as raw materials. Subsequently, the SAPC was incorporated into EP to prepare the composite to investigate its thermal stability, flame retardancy, and smoke suppression performance. Herein, a differential scanning calorimetry (DSC) analysis showed that the addition of SAPC increased the glass transition temperature (T-g) of the composite. Cone test results indicated that the incorporation of 8 wt % SAPC significantly improved the flame-retardant performance for the composite, with a 43.45% decrease in peak of heat release rate, a 28.55% reduction in total heat release, and a 30.04% decrease in total smoke release. Additionally, the composite received the V-0 rating in a UL-94 vertical burning test, accompanied by the "blowout" phenomenon. After the addition of SAPC, the amount of flammable gas products from the EP composite decomposition was obviously suppressed, and the amount of non-flammable as was increased. All of this suggests a good dilution role of SAPC. There are enough reasons to believe that the enhanced flame-retardant and toxicity suppression performance for the EP composite can be attributed to the good coordination of carbonization agent, acid source, and blowing agent in the SAPC structure.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Synthesis and properties of a new halogen-free flame-retardant epoxy resin flame retardant
    Wu, Yushuang
    Long, Jiapeng
    Bing Liang
    Yan Yanan
    PIGMENT & RESIN TECHNOLOGY, 2024, 53 (01) : 62 - 68
  • [12] Synergistic Flame Retardant Effect of Barium Phytate and Intumescent Flame Retardant for Epoxy Resin
    Wang, Linyuan
    Wei, Yue
    Deng, Hongbo
    Lyu, Ruiqi
    Zhu, Jiajie
    Yang, Yabing
    POLYMERS, 2021, 13 (17)
  • [13] Preparation of Green Star-topology Phosphazene Flame Retardant and Properties of Flame-retardant Epoxy Resin
    Lu Lingang
    Cheng Zhe
    Qiu Xinming
    Wang Huiya
    Yang Shousheng
    Qian Xiaodong
    Wang Xuebao
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2018, 39 (12): : 2789 - 2796
  • [14] Influence of the Chemical Structure on the Flame Retardant Mechanism and Mechanical Properties of Flame-Retardant Epoxy Resin Thermosets
    Liu, Dongyue
    Zhao, Wenhua
    Cui, Yihua
    Zhang, Tianlong
    Ji, Pengfei
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2022, 307 (09)
  • [15] Preparation of a Polymeric Phosphoramide Flame-Retardant and Its Effect on the Flame-Retardant Properties of Epoxy Resin
    Wang, Hao
    Wang, Yinjie
    Su, Yan
    Yu, Chuang
    Han, Jia
    Liu, Jiping
    POLYMERS, 2024, 16 (09)
  • [16] A New Intumescent Flame Retardant on Epoxy Resin
    Sun, Chun Feng
    Gao, Ming
    MATERIALS SCIENCE AND PROCESSING, ENVIRONMENTAL ENGINEERING AND INFORMATION TECHNOLOGIES, 2014, 665 : 307 - 310
  • [17] α-Aminophosphonate Derivatives for Enhanced Flame Retardant Properties in Epoxy Resin
    Stanfield, Melissa K.
    Carrascal, Jeronimo
    Henderson, Luke C.
    Eyckens, Daniel J.
    MATERIALS, 2021, 14 (12)
  • [18] Research on the Novel Phosphorus Flame Retardant Epoxy Resin Model and the Corresponding Flame Retardant Performance
    Zhang, Jitang
    Liang, Jicai
    Zhang, Wanxi
    PROCEEDINGS OF THE 2016 6TH INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS, ENVIRONMENT, BIOTECHNOLOGY AND COMPUTER (MMEBC), 2016, 88 : 980 - 983
  • [19] Intumescent Flame Retardant/Nano-CuO Synergistic Flame-Retardant Epoxy Resin
    Lu L.
    Zhao J.
    Su Q.
    Wang H.
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2020, 36 (10): : 63 - 70and78
  • [20] Synthesis of a Flame Retardant for Epoxy Resins: Thermal Stability, Flame Retardancy, and Flame-Retardant Modes
    Zhang, Y.
    Liu, J.
    Li, S.
    INTERNATIONAL POLYMER PROCESSING, 2021, 36 (02) : 172 - 184