An Efficient Density-based clustering algorithm for face groping

被引:6
|
作者
Pei, Shenfei [1 ,2 ]
Nie, Feiping [1 ,2 ]
Wang, Rong [2 ,3 ]
Li, Xuelong [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect iOPEN, Xian 710072, Shaanxi, Peoples R China
[3] Northwestern Polytech Univ, Sch Cybersecur, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Fast clustering; Linkage-based; Density-based; Graph partitioning; RECOGNITION; DBSCAN;
D O I
10.1016/j.neucom.2021.07.074
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper focuses on the following problem: Given a large number of unlabeled face images, group them into individual clusters, and the number of clusters cannot be known in advance. To this end, an Efficient Density-based clustering incorporated with the model of Graph partitioning (EDG) is proposed. 1. Inspired by the progress of graph partitioning clustering, a novel criterion that can be seen as a variant of the Normalized-cut model is employed to measure the similarity between two samples. 2. We only consider the similarities and connections on a subset of all possible pairs, i.e. the top-K nearest neighbors for each sample. Therefore, the computing and storage costs are linear w.r.t. the number of samples. In order to assess the performance of EDG on face images, extensive experiments based on a two-stage framework have been conducted on 19 benchmark datasets (14 middle-scale and 5 large-scale) from the literature. The experimental results have shown the effectiveness and robustness of our model, com-pared with the state-of-the-art methods. [code] (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:331 / 343
页数:13
相关论文
共 50 条
  • [31] Video abstraction using density-based clustering algorithm
    Chamasemani, Fereshteh Falah
    Affendey, Lilly Suriani
    Mustapha, Norwati
    Khalid, Fatimah
    VISUAL COMPUTER, 2018, 34 (10): : 1299 - 1314
  • [32] Design of computationally efficient density-based clustering algorithms
    Nanda, Satyasai Jagannath
    Panda, Ganapati
    DATA & KNOWLEDGE ENGINEERING, 2015, 95 : 23 - 38
  • [33] Efficient Density-Based Subspace Clustering in High Dimensions
    Assent, Ira
    CLUSTERING HIGH-DIMENSIONAL DATA, CHDD 2012, 2015, 7627 : 34 - 49
  • [34] MR-DBSCAN: An Efficient Parallel Density-based Clustering Algorithm using MapReduce
    He, Yaobin
    Tan, Haoyu
    Luo, Wuman
    Mao, Huajian
    Ma, Di
    Feng, Shengzhong
    Fan, Jianping
    2011 IEEE 17TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2011, : 473 - 480
  • [35] AnyDBC: An Efficient Anytime Density-based Clustering Algorithm for Very Large Complex Datasets
    Mai, Son T.
    Assent, Ira
    Storgaard, Martin
    KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 1025 - 1034
  • [36] K-DBSCAN: An efficient density-based clustering algorithm supports parallel computing
    Deng C.
    Song J.
    Cai S.
    Sun R.
    Shi Y.
    Hao S.
    International Journal of Simulation and Process Modelling, 2018, 13 (05) : 496 - 505
  • [37] An Improved BAT Algorithm Using Density-Based Clustering
    Al-Asadi, Samraa Adnan
    Al-Mamory, Safaa O.
    INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE, 2023, 26 (72): : 102 - 123
  • [38] A GPU-Accelerated Density-Based Clustering Algorithm
    Loh, Woong-Kee
    Kim, Young-Kuk
    2014 IEEE FOURTH INTERNATIONAL CONFERENCE ON BIG DATA AND CLOUD COMPUTING (BDCLOUD), 2014, : 775 - 776
  • [39] A density-based clustering algorithm for the CYGNO data analysis
    Baracchini, E.
    Benussi, L.
    Bianco, S.
    Capoccia, C.
    Caponero, M.
    Cavoto, G.
    Cortez, A.
    Costa, I. A.
    Di Marco, E.
    D'Imperio, G.
    Dho, G.
    Lacoangeli, F.
    Maccarrone, G.
    Marafini, M.
    Mazzitelli, G.
    Messina, A.
    Nobrega, R. A.
    Orlandi, A.
    Paoletti, E.
    Passamonti, L.
    Petrucci, F.
    Piccolo, D.
    Pierluigi, D.
    Pinci, D.
    Renga, F.
    Rosatelli, F.
    Russo, A.
    Saviano, G.
    Tesauroc, R.
    Tomassini, S.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (12)
  • [40] Optimal choice of parameters for a density-based clustering algorithm
    Gan, WY
    Li, DY
    ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, 2003, 2639 : 603 - 606