Spin-orbit qubit in a semiconductor nanowire

被引:590
|
作者
Nadj-Perge, S. [1 ]
Frolov, S. M. [1 ]
Bakkers, E. P. A. M. [1 ,2 ]
Kouwenhoven, L. P. [1 ]
机构
[1] Delft Univ Technol, Kavli Inst Nanosci, NL-2600 GA Delft, Netherlands
[2] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
关键词
SINGLE-ELECTRON SPIN; QUANTUM-DOT; MANIPULATION; FIELD;
D O I
10.1038/nature09682
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Motion of electrons can influence their spins through a fundamental effect called spin-orbit interaction. This interaction provides a way to control spins electrically and thus lies at the foundation of spintronics(1). Even at the level of single electrons, the spin-orbit interaction has proven promising for coherent spin rotations(2). Here we implement a spin-orbit quantum bit (qubit) in an indium arsenide nanowire, where the spin-orbit interaction is so strong that spin and motion can no longer be separated(3,4). In this regime, we realize fast qubit rotations and universal single-qubit control using only electric fields; the qubits are hosted in single-electron quantum dots that are individually addressable. We enhance coherence by dynamically decoupling the qubits from the environment. Nanowires offer various advantages for quantum computing: they can serve as one-dimensional templates for scalable qubit registers, and it is possible to vary the material even during wire growth(5). Such flexibility can be used to design wires with suppressed decoherence and to push semiconductor qubit fidelities towards error correction levels. Furthermore, electrical dots can be integrated with optical dots in p-n junction nanowires(6). The coherence times achieved here are sufficient for the conversion of an electronic qubit into a photon, which can serve as a flying qubit for long-distance quantum communication.
引用
收藏
页码:1084 / 1087
页数:4
相关论文
共 50 条
  • [31] Magnetic and Thermodynamic Properties of a Nanowire with Rashba Spin-Orbit Interaction
    Khoshbakht, Y.
    Khordad, R.
    Rastegar Sedehi, H. R.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2021, 202 (1-2) : 59 - 70
  • [32] Spin-orbit coupling: Atom versus semiconductor crystal
    Combescot, Monique
    Shiau, Shiue-Yuan
    Voliotis, Valia
    PHYSICAL REVIEW B, 2019, 99 (24)
  • [33] Spin-orbit splitting of valence subbands in semiconductor nanostructures
    Durnev, M. V.
    Glazov, M. M.
    Ivchenko, E. L.
    PHYSICAL REVIEW B, 2014, 89 (07)
  • [34] Determination of spin-orbit coefficients in semiconductor quantum wells
    Faniel, S.
    Matsuura, T.
    Mineshige, S.
    Sekine, Y.
    Koga, T.
    PHYSICAL REVIEW B, 2011, 83 (11):
  • [35] Electrical manipulation of spin-orbit coupling in semiconductor heterostructures
    Sih, Vanessa
    Awschalom, David D.
    JOURNAL OF APPLIED PHYSICS, 2007, 101 (08)
  • [36] Frohlich polaron in nanowire with Rashba and Dresselhaus spin-orbit couplings
    Vartanian, Arshak
    Kirakosyan, Albert
    Vardanyan, Karen
    SUPERLATTICES AND MICROSTRUCTURES, 2017, 109 : 655 - 661
  • [37] Proximity effect in a ferromagnetic semiconductor with spin-orbit interactions
    Yamashita, Taketoki
    Lee, Jaechul
    Habe, Tetsuro
    Asano, Yasuhiro
    PHYSICAL REVIEW B, 2019, 100 (09)
  • [38] Zeeman and spin-orbit effects in the Andreev spectra of nanowire junctions
    van Heck, B.
    Vayrynen, J. I.
    Glazman, L. I.
    PHYSICAL REVIEW B, 2017, 96 (07)
  • [39] Spin transition rates in nanowire superlattices: Rashba spin-orbit coupling effects
    Prabhakar, Sanjay
    Melnik, Roderick
    Bonilla, Luis L.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (26)
  • [40] Spin transistor operation driven by the Rashba spin-orbit coupling in the gated nanowire
    Wojcik, P.
    Adamowski, J.
    Spisak, B. J.
    Woloszyn, M.
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (10)