NONOVERLAPPING DOMAIN DECOMPOSITION WITH SECOND ORDER TRANSMISSION CONDITION FOR THE TIME-HARMONIC MAXWELL'S EQUATIONS

被引:36
|
作者
Rawat, Vineet [1 ]
Lee, Jin-Fa [2 ]
机构
[1] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[2] Ohio State Univ, Electrosci Lab, Columbus, OH 43212 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2010年 / 32卷 / 06期
关键词
Maxwell's equations; nonoverlapping domain decomposition; finite elements; transmission conditions; OPTIMIZED SCHWARZ METHODS; FINITE-ELEMENT; SCATTERING;
D O I
10.1137/090777220
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonoverlapping domain decomposition methods have been shown to provide efficient iterative algorithms for the solution of the time-harmonic Maxwell's equations. Convergence of the algorithms depends strongly upon the nature of the transmission conditions that communicate information between adjacent subdomains. In this work, we introduce a new second order transmission condition that improves convergence. In contrast to previous high order interface conditions, the new condition uses two second order transverse derivatives to improve the convergence of evanescent modes without deteriorating the convergence of propagating modes. An analysis using a splitting of the field into traverse electric and magnetic components demonstrates the improved convergence provided by the transmission condition. Numerical experiments demonstrate the effectiveness of the algorithm.
引用
收藏
页码:3584 / 3603
页数:20
相关论文
共 50 条
  • [31] An iterative method for time-harmonic integral Maxwell's equations
    Collino, F
    Després, B
    COUPLING OF FLUIDS, STRUCTURES AND WAVES IN AERONAUTICS, PROCEEDINGS, 2003, 85 : 171 - 181
  • [32] Nonlinear time-harmonic Maxwell equations in domains
    Thomas Bartsch
    Jarosław Mederski
    Journal of Fixed Point Theory and Applications, 2017, 19 : 959 - 986
  • [33] Nonlinear time-harmonic Maxwell equations in domains
    Bartsch, Thomas
    Mederski, Jarosaw
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (01) : 959 - 986
  • [34] Schwarz Preconditioning for High Order Edge Element Discretizations of the Time-Harmonic Maxwell's Equations
    Bonazzoli, Marcella
    Dolean, Victorita
    Pasquetti, Richard
    Rapetti, Francesca
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXIII, 2017, 116 : 117 - 124
  • [35] Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell's equations
    Nguyen, N. C.
    Peraire, J.
    Cockburn, B.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (19) : 7151 - 7175
  • [36] A NEW HETEROGENEOUS MULTISCALE METHOD FOR TIME-HARMONIC MAXWELL'S EQUATIONS
    Henning, Patrick
    Ohlberger, Mario
    Verfuerth, Barbara
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (06) : 3493 - 3522
  • [37] Homogenization of time-harmonic Maxwell's equations in nonhomogeneous plasmonic structures
    Maier, Matthias
    Margetis, Dionisios
    Mellet, Antoine
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 377
  • [38] A sweeping preconditioner for time-harmonic Maxwell's equations with finite elements
    Tsuji, Paul
    Engquist, Bjorn
    Ying, Lexing
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (09) : 3770 - 3783
  • [39] Adjoint variable method for time-harmonic Maxwell equations
    Durand, Stephane
    Cimrak, Ivan
    Sergeant, Peter
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2009, 28 (05) : 1202 - 1215
  • [40] Time-harmonic Maxwell equations with asymptotically linear polarization
    Qin, Dongdong
    Tang, Xianhua
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):