Error bounds for Gaussian quadrature rules using linear kernels

被引:1
|
作者
Masjed-Jamei, Mohammad [1 ]
Area, Ivan [2 ]
机构
[1] KN Toosi Univ Technol, Dept Math, POB 16315-1618, Tehran, Iran
[2] Univ Vigo, EE Telecomunicac, Dept Matemat Aplicada 2, Vigo 36310, Spain
关键词
Gaussian quadratures; error bounds; linear kernels; orthogonal polynomials; weight function; ANALYTIC-FUNCTIONS; FORMULAS; SYSTEMS;
D O I
10.1080/00207160.2015.1067307
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well-known that the remaining term of a n-point Gaussian quadrature depends on the 2n-order derivative of the integrand function. Discounting the fact that calculating a 2n-order derivative requires a lot of differentiation, the main problem is that an error bound for a n-point Gaussian quadrature is only relevant for a function that is 2n times differentiable, a rather stringent condition. In this paper, by defining some specific linear kernels, we resolve this problem and obtain new error bounds (involving only the first derivative of the weighted integrand function) for all Gaussian weighted quadrature rules whose nodes and weights are pre-assigned over a finite interval. The advantage of using linear kernels is that their L-1-norm, L-infinity-norm, maximum and minimum can easily be computed. Three illustrative examples are given in this direction.
引用
收藏
页码:1505 / 1523
页数:19
相关论文
共 50 条
  • [31] ERROR-BOUNDS FOR GAUSSIAN QUADRATURE AND WEIGHTED-L1 POLYNOMIAL-APPROXIMATION
    DEVORE, RA
    SCOTT, LR
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (02) : 400 - 412
  • [32] ERROR ESTIMATES FOR GAUSSIAN QUADRATURE FORMULAS
    VONSYDOW, B
    NUMERISCHE MATHEMATIK, 1977, 29 (01) : 59 - 64
  • [33] SOME ERROR EXPANSIONS FOR GAUSSIAN QUADRATURE
    HUNTER, DB
    BIT, 1995, 35 (01): : 64 - 82
  • [34] ERROR BOUNDS FOR GAUSSIAN CUBATURE
    AHLIN, AC
    SIAM REVIEW, 1962, 4 (01) : 25 - +
  • [35] Generalization Bounds of Regularization Algorithm with Gaussian Kernels
    Feilong Cao
    Yufang Liu
    Weiguo Zhang
    Neural Processing Letters, 2014, 39 : 179 - 194
  • [36] Generalization Bounds of Regularization Algorithm with Gaussian Kernels
    Cao, Feilong
    Liu, Yufang
    Zhang, Weiguo
    NEURAL PROCESSING LETTERS, 2014, 39 (02) : 179 - 194
  • [37] Generalized Gaussian quadrature rules over two-dimensional regions with linear sides
    Sarada, Jayan
    Nagaraja, K. V.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) : 5612 - 5621
  • [38] A new class of quadrature rules for estimating the error in Gauss quadrature
    Pejcev, Aleksandar V.
    Reichel, Lothar
    Spalevic, Miodrag M.
    Spalevic, Stefan M.
    APPLIED NUMERICAL MATHEMATICS, 2024, 204 : 206 - 221
  • [39] Generalized Gaussian quadrature rules on arbitrary polygons
    Mousavi, S. E.
    Xiao, H.
    Sukumar, N.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 82 (01) : 99 - 113
  • [40] CLASSICAL QUADRATURE RULES VIA GAUSSIAN PROCESSES
    Karvonen, Toni
    Sarkka, Simo
    2017 IEEE 27TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2017,