Learning the Incremental Warp for 3D Vehicle Tracking in LiDAR Point Clouds

被引:4
|
作者
Tian, Shengjing [1 ]
Liu, Xiuping [1 ]
Liu, Meng [2 ]
Bian, Yuhao [1 ]
Gao, Junbin [3 ]
Yin, Baocai [4 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[2] Shan Dong Jianzhu Univ, Sch Comp & Technol, Jinan 250101, Peoples R China
[3] Univ Sydney, Business Sch, Discipline Business Analyt, Sydney, NSW 2006, Australia
[4] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
point clouds; 3D tracking; state estimation; Siamese network; deep LK; OBJECT TRACKING;
D O I
10.3390/rs13142770
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Object tracking from LiDAR point clouds, which are always incomplete, sparse, and unstructured, plays a crucial role in urban navigation. Some existing methods utilize a learned similarity network for locating the target, immensely limiting the advancements in tracking accuracy. In this study, we leveraged a powerful target discriminator and an accurate state estimator to robustly track target objects in challenging point cloud scenarios. Considering the complex nature of estimating the state, we extended the traditional Lucas and Kanade (LK) algorithm to 3D point cloud tracking. Specifically, we propose a state estimation subnetwork that aims to learn the incremental warp for updating the coarse target state. Moreover, to obtain a coarse state, we present a simple yet efficient discrimination subnetwork. It can project 3D shapes into a more discriminatory latent space by integrating the global feature into each point-wise feature. Experiments on KITTI and PandaSet datasets showed that compared with the most advanced of other methods, our proposed method can achieve significant improvements-in particular, up to 13.68% on KITTI.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Graph-Based Point Tracker for 3D Object Tracking in Point Clouds
    Park, Minseong
    Seong, Hongje
    Jang, Wonje
    Kim, Euntai
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 2053 - 2061
  • [42] DAPS3D: Domain Adaptive Projective Segmentation of 3D LiDAR Point Clouds
    Klokov, Alexey A.
    Pak, Di Un
    Khorin, Aleksandr
    Yudin, Dmitry A.
    Kochiev, Leon
    Luchinskiy, Vladimir D.
    Bezuglyj, Vitaly D.
    IEEE ACCESS, 2023, 11 : 79341 - 79356
  • [43] COMPARISON OF 2D AND 3D APPROACHES FOR THE ALIGNMENT OF UAV AND LIDAR POINT CLOUDS
    Persad, Ravi Ancil
    Armenakis, Costas
    INTERNATIONAL CONFERENCE ON UNMANNED AERIAL VEHICLES IN GEOMATICS (VOLUME XLII-2/W6), 2017, 42-2 (W6): : 275 - 279
  • [44] Point-set Distances for Learning Representations of 3D Point Clouds
    Nguyen, Trung
    Quang-Hieu Pham
    Le, Tam
    Pham, Tung
    Ho, Nhat
    Binh-Son Hua
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 10458 - 10467
  • [45] Real-time vehicle detection and tracking using 3D LiDAR
    Wang, Heng
    Zhang, Xiaodong
    ASIAN JOURNAL OF CONTROL, 2022, 24 (03) : 1459 - 1469
  • [46] Beyond 3D Siamese Tracking: A Motion-Centric Paradigm for 3D Single Object Tracking in Point Clouds
    Zheng, Chaoda
    Yan, Xu
    Zhang, Haiming
    Wang, Baoyuan
    Cheng, Shenghui
    Cui, Shuguang
    Li, Zhen
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 8101 - 8110
  • [47] FlowNet3D: Learning Scene Flow in 3D Point Clouds
    Liu, Xingyu
    Qi, Charles R.
    Guibas, Leonidas J.
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 529 - 537
  • [48] INCREMENTAL REFINEMENT OF FACADE MODELS WITH ATTRIBUTE GRAMMAR FROM 3D POINT CLOUDS
    Dehbi, Y.
    Staat, C.
    Mandtler, L.
    Pluemer, L.
    XXIII ISPRS CONGRESS, COMMISSION III, 2016, 3 (03): : 311 - 316
  • [49] Incremental Division of Very Large Point Clouds for Scalable 3D Surface Reconstruction
    Kuhn, Andreas
    Mayer, Helmut
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), 2015, : 157 - 165
  • [50] EFNet: enhancing feature information for 3D object detection in LiDAR point clouds
    Meng, Xin
    Zhou, Yuan
    Du, Kaiyue
    Ma, Jun
    Meng, Jin
    Kumar, Aakash
    Lv, Jiahang
    Kim, Jonghyuk
    Wang, Shifeng
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2024, 41 (04) : 739 - 748