Learning the Incremental Warp for 3D Vehicle Tracking in LiDAR Point Clouds

被引:4
|
作者
Tian, Shengjing [1 ]
Liu, Xiuping [1 ]
Liu, Meng [2 ]
Bian, Yuhao [1 ]
Gao, Junbin [3 ]
Yin, Baocai [4 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[2] Shan Dong Jianzhu Univ, Sch Comp & Technol, Jinan 250101, Peoples R China
[3] Univ Sydney, Business Sch, Discipline Business Analyt, Sydney, NSW 2006, Australia
[4] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
point clouds; 3D tracking; state estimation; Siamese network; deep LK; OBJECT TRACKING;
D O I
10.3390/rs13142770
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Object tracking from LiDAR point clouds, which are always incomplete, sparse, and unstructured, plays a crucial role in urban navigation. Some existing methods utilize a learned similarity network for locating the target, immensely limiting the advancements in tracking accuracy. In this study, we leveraged a powerful target discriminator and an accurate state estimator to robustly track target objects in challenging point cloud scenarios. Considering the complex nature of estimating the state, we extended the traditional Lucas and Kanade (LK) algorithm to 3D point cloud tracking. Specifically, we propose a state estimation subnetwork that aims to learn the incremental warp for updating the coarse target state. Moreover, to obtain a coarse state, we present a simple yet efficient discrimination subnetwork. It can project 3D shapes into a more discriminatory latent space by integrating the global feature into each point-wise feature. Experiments on KITTI and PandaSet datasets showed that compared with the most advanced of other methods, our proposed method can achieve significant improvements-in particular, up to 13.68% on KITTI.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] UNSUPERVISED STREAM LEARNING FOR 3D LIDAR POINT CLOUDS
    Shreelakshmi, C. R.
    Durbha, Surya S.
    Shinde, Rajat C.
    Talreja, Pratyush V.
    Singh, Gaganpreet
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 4451 - 4454
  • [2] On the Segmentation of 3D LIDAR Point Clouds
    Douillard, B.
    Underwood, J.
    Kuntz, N.
    Vlaskine, V.
    Quadros, A.
    Morton, P.
    Frenkel, A.
    2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011,
  • [3] Point Clouds: Lidar versus 3D Vision
    Leberl, F.
    Irschara, A.
    Pock, T.
    Meixner, P.
    Gruber, M.
    Scholz, S.
    Wiechert, A.
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2010, 76 (10): : 1123 - 1134
  • [4] Adaptive Lidar Scan Frame Integration: Tracking Known MAVs in 3D Point Clouds
    Li Qingqing
    Yu Xianjia
    Queralta, Jorge Pena
    Westerlund, Tomi
    2021 20TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS (ICAR), 2021, : 1079 - 1086
  • [5] A Simple Deep Learning Network for Classification of 3D Mobile LiDAR Point Clouds
    Yanjun WANG
    Shaochun LI
    Mengjie WANG
    Yunhao LIN
    Journal of Geodesy and Geoinformation Science, 2021, 4 (03) : 49 - 59
  • [6] SIMULATING LIDAR TO CREATE TRAINING DATA FOR MACHINE LEARNING ON 3D POINT CLOUDS
    Hildebrand, J.
    Schulz, S.
    Richter, R.
    Doellner, J.
    17TH 3D GEOINFO CONFERENCE, 2022, 10-4 (W2): : 105 - 112
  • [7] Self Supervised Learning for Multiple Object Tracking in 3D Point Clouds
    Kumar, Aakash
    Kini, Jyoti
    Mian, Ajmal
    Shah, Mubarak
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 3754 - 3761
  • [8] Biomass Prediction with 3D Point Clouds from LiDAR
    Pan, Liyuan
    Liu, Liu
    Condon, Anthony G.
    Estavillo, Gonzalo M.
    Coe, Robert A.
    Bull, Geoff
    Stone, Eric A.
    Petersson, Lars
    Rolland, Vivien
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 1716 - 1726
  • [9] Tracking 3D LIDAR Point Clouds Using Extended Kalman Filters in KITTI Driving Sequences
    Maalej, Yassine
    Sorour, Sameh
    Abdel-Rahim, Ahmed
    Guizani, Mohsen
    2018 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2018,
  • [10] Unmanned Vehicle 3D Lidar Point Cloud Segmentation
    Guo, Rui
    Jiang, Zheyi
    Gao, Rui
    Yang, Wenkun
    Gao, Yuxin
    Chen, Xiaofeng
    Zhi, Yongfeng
    Guo, Liang
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 2964 - 2968