Minimal rates of entropy convergence for completely ergodic systems

被引:5
|
作者
Blume, F [1 ]
机构
[1] John Brown Univ, Dept Math, Siloarn Springs, AR 72761 USA
关键词
D O I
10.1007/BF02783038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If (X,T) is a completely ergodic system, then there exists a positive monotone increasing sequence {an}(n=1)(infinity) with lim(n-->infinity) a(n) = infinity and a positive concave function g defined on [1, infinity) for which g(x)/x(2) is not integrable such that [GRAPHICS] for all nontrivial partitions alpha of X into two sets.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [31] SUBGEOMETRIC RATES OF CONVERGENCE OF F-ERGODIC MARKOV-CHAINS
    TUOMINEN, P
    TWEEDIE, RL
    ADVANCES IN APPLIED PROBABILITY, 1994, 26 (03) : 775 - 798
  • [32] On spectral measures and convergence rates in von Neumann's Ergodic theorem
    Aloisio, Moacir
    Carvalho, Silas L.
    de Oliveira, Cesar R.
    Souza, Edson
    MONATSHEFTE FUR MATHEMATIK, 2024, 203 (03): : 543 - 562
  • [33] Deviations of Fejer Sums and Rates of Convergence in the von Neumann Ergodic Theorem
    Kachurovskii, A. G.
    Knizhov, K. I.
    DOKLADY MATHEMATICS, 2018, 97 (03) : 211 - 214
  • [34] On empirical processes for ergodic diffusions and rates of convergence of M-estimators
    Van Zanten, H
    SCANDINAVIAN JOURNAL OF STATISTICS, 2003, 30 (03) : 443 - 458
  • [35] Rates of convergence and asymptotic normality of kernel estimators for ergodic diffusion processes
    Van Zanten, H
    JOURNAL OF NONPARAMETRIC STATISTICS, 2001, 13 (06) : 833 - 850
  • [36] On spectral measures and convergence rates in von Neumann’s Ergodic theorem
    Moacir Aloisio
    Silas L. Carvalho
    César R. de Oliveira
    Edson Souza
    Monatshefte für Mathematik, 2024, 203 : 543 - 562
  • [37] Renewal theory and computable convergence rates for geometrically ergodic Markov chains
    Baxendale, PH
    ANNALS OF APPLIED PROBABILITY, 2005, 15 (1B): : 700 - 738
  • [38] On the ergodic convergence rates of a first-order primal–dual algorithm
    Antonin Chambolle
    Thomas Pock
    Mathematical Programming, 2016, 159 : 253 - 287
  • [39] Deviations of Fejer Sums and Rates of Convergence in the von Neumann Ergodic Theorem
    A. G. Kachurovskii
    K. I. Knizhov
    Doklady Mathematics, 2018, 97 : 211 - 214
  • [40] Subgeometric rates of convergence of f-ergodic strong Markov processes
    Douc, Randal
    Fort, Gersende
    Guillin, Arnaud
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (03) : 897 - 923