Machine learning models for drug-target interactions: current knowledge and future directions

被引:111
|
作者
D'Souza, Sofia [1 ]
Prema, K., V [1 ]
Seetharaman, Balaji [2 ]
机构
[1] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Comp Sci & Engn, Manipal 576104, Karnataka, India
[2] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Biotechnol, Manipal 576104, Karnataka, India
关键词
MULTIVARIATE CHARACTERIZATION; AFFINITY PREDICTION; NEURAL-NETWORK; DISCOVERY; QSAR; DOCKING; BINDING; 3D-QSAR; DESIGN; PROTEOCHEMOMETRICS;
D O I
10.1016/j.drudis.2020.03.003
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Predicting the binding affinity between compounds and proteins with reasonable accuracy is crucial in drug discovery. Computational prediction of binding affinity between compounds and targets greatly enhances the probability of finding lead compounds by reducing the number of wet-lab experiments. Machine-learning and deep-learning techniques using ligand-based and target-based approaches have been used to predict binding affinities, thereby saving time and cost in drug discovery efforts. In this review, we discuss about machine-learning and deep-learning models used in virtual screening to improve drug-target interaction (DTI) prediction. We also highlight current knowledge and future directions to guide further development in this field.
引用
收藏
页码:748 / 756
页数:9
相关论文
共 50 条
  • [41] Predicting Drug-Target Interactions with Deep-Embedding Learning of Graphs and Sequences
    Chen, Wei
    Chen, Guanxing
    Zhao, Lu
    Chen, Calvin Yu-Chian
    JOURNAL OF PHYSICAL CHEMISTRY A, 2021, 125 (25): : 5633 - 5642
  • [42] Prediction of Drug-Target Interactions by Ensemble Learning Method From Protein Sequence and Drug Fingerprint
    Zhan, Xinke
    You, Zhu-Hong
    Cai, Jinfan
    Li, Liping
    Yu, Changqing
    Pan, Jie
    Kong, Jiangkun
    IEEE ACCESS, 2020, 8 : 185465 - 185476
  • [43] Machine Learning in Malware Analysis: Current Trends and Future Directions
    Altaha, Safa
    Riad, Khaled
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (01) : 1267 - 1279
  • [44] Combining biomedical knowledge graphs and text to improve predictions for drug-target interactions and drug-indications
    Alshahrani, Mona
    Almansour, Abdullah
    Alkhaldi, Asma
    Thafar, Maha A.
    Uludag, Mahmut
    Essack, Magbubah
    Hoehndorf, Robert
    PEERJ, 2022, 10
  • [45] The Computational Models of Drug-Target Interaction Prediction
    Ding, Yijie
    Tang, Jijun
    Guo, Fei
    PROTEIN AND PEPTIDE LETTERS, 2020, 27 (05): : 348 - 358
  • [46] DeepDrug: A general graph-based deep learning framework for drug-drug interactions and drug-target interactions prediction
    Yin, Qijin
    Fan, Rui
    Cao, Xusheng
    Liu, Qiao
    Jiang, Rui
    Zeng, Wanwen
    QUANTITATIVE BIOLOGY, 2023, 11 (03) : 260 - 274
  • [47] Drug abuse research in rural communities: Current knowledge and future directions
    Clayton, Richard R.
    McBride, Duane
    Roberts, Laura Weiss
    Hartsock, Peter
    JOURNAL OF RURAL HEALTH, 2007, 23 : 4 - 9
  • [48] Drug-target interaction prediction with deep learning
    YANG Shuo
    LI Shi-liang
    LI Hong-lin
    中国药理学与毒理学杂志, 2019, (10) : 855 - 855
  • [49] Transfer learning for drug-target interaction prediction
    Dalkiran, Alperen
    Atakan, Ahmet
    Rifaioglu, Ahmet S.
    Martin, Maria J.
    Atalay, Renguel Cetin
    Acar, Aybar C.
    Dogan, Tunca
    Atalay, Volkan
    BIOINFORMATICS, 2023, 39 : I103 - I110
  • [50] Transfer learning for drug-target interaction prediction
    Dalkiran, Alperen
    Atakan, Ahmet
    Rifaioglu, Ahmet S.
    Martin, Maria J.
    Atalay, Rengul Cetin
    Acar, Aybar C.
    Dogan, Tunca
    Atalay, Volkan
    BIOINFORMATICS, 2023, 39 : i103 - i110