Machine learning models for drug-target interactions: current knowledge and future directions

被引:111
|
作者
D'Souza, Sofia [1 ]
Prema, K., V [1 ]
Seetharaman, Balaji [2 ]
机构
[1] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Comp Sci & Engn, Manipal 576104, Karnataka, India
[2] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Biotechnol, Manipal 576104, Karnataka, India
关键词
MULTIVARIATE CHARACTERIZATION; AFFINITY PREDICTION; NEURAL-NETWORK; DISCOVERY; QSAR; DOCKING; BINDING; 3D-QSAR; DESIGN; PROTEOCHEMOMETRICS;
D O I
10.1016/j.drudis.2020.03.003
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Predicting the binding affinity between compounds and proteins with reasonable accuracy is crucial in drug discovery. Computational prediction of binding affinity between compounds and targets greatly enhances the probability of finding lead compounds by reducing the number of wet-lab experiments. Machine-learning and deep-learning techniques using ligand-based and target-based approaches have been used to predict binding affinities, thereby saving time and cost in drug discovery efforts. In this review, we discuss about machine-learning and deep-learning models used in virtual screening to improve drug-target interaction (DTI) prediction. We also highlight current knowledge and future directions to guide further development in this field.
引用
收藏
页码:748 / 756
页数:9
相关论文
共 50 条
  • [1] Deep Learning based Models for Drug-Target Interactions
    Raheem, Ali K. Abdul
    Dhannoon, Ban N.
    BAGHDAD SCIENCE JOURNAL, 2024, 21 (11) : 3605 - 3616
  • [2] Application of Machine Learning Techniques in Drug-target Interactions Prediction
    Zhang, Shengli
    Wang, Jiesheng
    Lin, Zhenhui
    Liang, Yunyun
    CURRENT PHARMACEUTICAL DESIGN, 2021, 27 (17) : 2076 - 2087
  • [3] Protein language models for predicting drug-target interactions: Novel approaches, emerging methods, and future directions
    Unlu, Atabey
    Ulusoy, Erva
    Yigit, Melih Gokay
    Darcan, Melih
    Dogan, Tunca
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2025, 91
  • [4] A Comparative Analytical Review on Machine Learning Methods in Drug-target Interactions Prediction
    Nikraftar, Zahra
    Keyvanpour, Mohammad Reza
    CURRENT COMPUTER-AIDED DRUG DESIGN, 2023, 19 (05) : 325 - 355
  • [5] A review of machine learning-based methods for predicting drug-target interactions
    Shi, Wen
    Yang, Hong
    Xie, Linhai
    Yin, Xiao-Xia
    Zhang, Yanchun
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2024, 12 (01)
  • [6] Machine Learning for Drug-Target Interaction Prediction
    Chen, Ruolan
    Liu, Xiangrong
    Jin, Shuting
    Lin, Jiawei
    Liu, Juan
    MOLECULES, 2018, 23 (09):
  • [7] Revealing Drug-Target Interactions with Computational Models and Algorithms
    Zhou, Liqian
    Li, Zejun
    Yang, Jialiang
    Tian, Geng
    Liu, Fuxing
    Wen, Hong
    Peng, Li
    Chen, Min
    Xiang, Ju
    Peng, Lihong
    MOLECULES, 2019, 24 (09):
  • [8] Application of Machine Learning for Drug-Target Interaction Prediction
    Xu, Lei
    Ru, Xiaoqing
    Song, Rong
    FRONTIERS IN GENETICS, 2021, 12
  • [9] Comparative Studies on Resampling Techniques in Machine Learning and Deep Learning Models for Drug-Target Interaction Prediction
    Azlim Khan, Azwaar Khan
    Ahamed Hassain Malim, Nurul Hashimah
    MOLECULES, 2023, 28 (04):
  • [10] Current status and future prospects of drug-target interaction prediction
    Ru, Xiaoqing
    Ye, Xiucai
    Sakurai, Tetsuya
    Zou, Quan
    Xu, Lei
    Lin, Chen
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2021, 20 (05) : 312 - 322