Thermodynamic, energy consumption and economic analyses of the novel cogeneration heating system based on condensed waste heat recovery

被引:25
|
作者
Li, Yan [1 ]
An, Huiling [1 ]
Li, Wentao [1 ]
Zhang, Shuyan [1 ]
Jia, Xingqiao [1 ]
Fu, Lin [2 ]
机构
[1] Yanshan Univ, Coll Civil Engn & Mech, Qinhuangdao, Peoples R China
[2] Tsinghua Univ, Sch Architecture, Beijing, Peoples R China
基金
中国博士后科学基金;
关键词
Cogeneration; Waste heat recovery; Thermodynamic analysis; Energy consumption analysis; Economic analysis; ABSORPTION CYCLE; EXERGY ANALYSIS; POWER-PLANT; TURBINE; PUMP; OPTIMIZATION; ELECTRICITY; EXCHANGERS; SIMULATION; EFFICIENCY;
D O I
10.1016/j.enconman.2018.09.091
中图分类号
O414.1 [热力学];
学科分类号
摘要
In order to utilize the condensed waste heat of multi turbine units of cogeneration plant efficiently and simultaneously, a novel cogeneration heating system is proposed. Comparative analyses are made among the conventional cogeneration heating system, the absorption heat pump cogeneration heating system, the high backpressure cogeneration heating system and the novel cogeneration heating system from the aspects of thermodynamics, energy consumption and economy. The research objects are 2 x 300 MW water-cooling turbine units. The aim of the work is to point out the optimization direction of system integration for the novel cogeneration heating system by the thermodynamic analysis, and to reveal the actual heating energy consumption and the unit heating cost of the systems based on the method of equivalent electricity of heating. The study results show that the novel cogeneration heating system reasonably matches the extraction steam, the exhaust steam and the heating network water with each other at different energy levels. Therefore, it has evident advantages in the aspects of the thermodynamic perfection, the actual heating energy consumption and the economy. Compared with other systems, the novel cogeneration heating system increases the total exergy efficiency by 6.1-14.1%, reduces the equivalent electricity of heating by 11.1-29.4% and reduces the unit heating cost by 8.7-23.9%.
引用
收藏
页码:671 / 681
页数:11
相关论文
共 50 条
  • [21] A novel system of liquid air energy storage with LNG cold energy and industrial waste heat: Thermodynamic and economic analysis
    Li, Junxian
    Fan, Xiaoyu
    Li, Yihong
    Wang, Zhikang
    Gao, Zhaozhao
    Ji, Wei
    Chen, Liubiao
    Wang, Junjie
    JOURNAL OF ENERGY STORAGE, 2024, 86
  • [22] Development of a novel cogeneration system by combing organic rankine cycle and heat pump cycle for waste heat recovery
    Liu, Liuchen
    Wu, Jinlu
    Zhong, Fen
    Gao, Naiping
    Cui, Guomin
    ENERGY, 2021, 217
  • [23] A comparative thermodynamic analysis of ORC and Kalina cycles for waste heat recovery: A case study for CGAM cogeneration system
    Nemati, Arash
    Nami, Hossein
    Ranjbar, Faramarz
    Yari, Mortaza
    CASE STUDIES IN THERMAL ENGINEERING, 2017, 9 : 1 - 13
  • [24] Renewable transport fuel production combined with cogeneration plant operation and waste heat recovery in district heating system
    Skvorcinskiene, R.
    Striugas, N.
    Galinis, A.
    Lekavicius, V
    Kurkela, E.
    Kurkela, M.
    Lukosevicius, R.
    Radinas, M.
    Sermuksniene, A.
    RENEWABLE ENERGY, 2022, 189 : 952 - 969
  • [25] A newly developed solar-based cogeneration system with energy storage and heat recovery for sustainable data centers: Energy and exergy analyses
    Temiz, Mert
    Dincer, Ibrahim
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 52
  • [26] Thermodynamic and economic investigation of a waste heat recovery system with thermoelectric generators in the cement industry
    Lykas, Panagiotis
    Bellos, Evangelos
    Atsonios, Konstantinos
    Itskos, Grigorios
    Nikolopoulos, Nikolaos
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2025, 60
  • [27] Thermodynamic, economic, and environmental analysis of new combined power and space cooling system for waste heat recovery in waste-to-energy plant
    Lu, Fulu
    Zhu, Yan
    Pan, Mingzhang
    Li, Chao
    Yin, Jiwen
    Huang, Fuchuan
    ENERGY CONVERSION AND MANAGEMENT, 2020, 226
  • [28] Exergetic and economic evaluation of a novel integrated system for cogeneration of power and freshwater using waste heat recovery of natural gas combined cycle
    Tian, Cong
    Su, Chang
    Yang, Chao
    Wei, Xiwen
    Pang, Peng
    Xu, Jianguo
    ENERGY, 2023, 264
  • [29] Energy efficiency and economic analysis of a novel polygeneration system based on LNG cold energy utilization and wet flue gas waste heat recovery
    Zhen, Shangguan
    Rui, Ziliang
    Zhang, Shulin
    He, Juan
    Chen, Lei
    Wang, Zhicheng
    Peng, Hao
    APPLIED THERMAL ENGINEERING, 2025, 260
  • [30] Thermoeconomic analysis of a novel cogeneration system for cascade recovery of waste heat from exhaust flue gases
    Fu, Ben-Ran
    Hsieh, Jui-Ching
    Cheng, Shao-Min
    Royandi, Muhamad Aditya
    APPLIED THERMAL ENGINEERING, 2024, 247